Mathematics Framework
Second Field Review Draft
March 2022
Page 1 of 154

Mathematics Framework
 Chapter 6 Mathematics: Investigating and Connecting, Transitional Kindergarten through Grade Five

Mathematics Framework Chapter 6 Mathematics: Investigating and Connecting,Transitional Kindergarten through Grade Five 1Why investigating and connecting mathematics? 3
Vignette: Comparing Numbers and Place Value Relationships - Grade Four, Integrated English Language Development (Integrated ELD) 5
Mathematics: Investigating and Connecting, Transitional Kindergarten Through Grade
Two 14
Content Connections 20
CC1: Communicating Stories with Data 23
CC2: Exploring Changing Quantities 24
CC3: Taking Wholes Apart, Putting Parts Together 34
CC4: Discovering Shape and Space 38
Vignette: Alex Builds Numbers with a Partner (a two-day lesson) 41
Mathematics: Investigating and Connecting, Grades Three through Five 53
Driving Investigation and Making Connections, Grades Three through Five 58
Content Connections, Grades Three Through Five 62
CC1: Communicating stories with data 62
CC2: Exploring changing quantities 70
CC3: Taking Wholes Apart and Putting Parts Together - Whole Numbers 82
CC3: Taking Wholes Apart and Putting Parts Together - Fractions 98
Understanding fractions as numbers; equivalence, and ordering fractions 99
Understanding decimal notation for fractions, and comparing decimal fractions109
CC 4: Discovering Shape and Space 119
Vignette: Santikone Builds Rectangles to Find Area 129
Critical Areas of Instructional Focus for Grades Three Through Five 135
Transition from Transitional Kindergarten Through Grade Five to Grades Six Through
Eight 144
How does learning in transitional kindergarten through grade five lead to success in grades six through eight when students communicate stories told by data? 144

How does learning in grades transitional kindergarten through grade five lead to success in grades six through eight when students are exploring changing quantities?
How does learning in grades transitional kindergarten through grade five lead to success in grades six through eight when students are taking numbers apart, putting parts together, representing thinking, and using strategies?
How does learning in grades transitional kindergarten through grade five lead to success in grades six through eight when students are discovering shape and space?
Conclusion 146

Note to reader: The use of the non-binary, singular pronouns they, them, their, theirs, themself, and themselves in this framework is intentional.

Why investigating and connecting mathematics?

The goal of the California Common Core State Standards for Mathematics (CA CCSSM) at every grade is for students to make sense of mathematics. To achieve this in transitional kindergarten (TK) through grade five, students must experience rich mathematical investigations that offer frequent opportunities for students to engage with one another in connecting big ideas in mathematics.

Frequent opportunities for mathematical discourse, like implementing math talks, create a climate for mathematical investigations, which promote understanding (Sfard, 2007), language for communicating (Moschkovich, 1999) about mathematics, and mathematical identities (Langer-Osuna and Esmonde, 2017). Mathematical discourse can center student thinking on tasks like offering, explaining, and justifying mathematical ideas and strategies, as well as attend to, make sense of, and respond to the mathematical ideas of others. Mathematical discourse includes communicating about mathematics with words, gestures, drawings, manipulatives, representations, symbols, and other tools that make sense to and are helpful for learning. In the early grades, students might, for example, explore geometric shapes, investigate ways to
compose and decompose them, and reason with peers about attributes of objects. Teachers' orchestration of mathematical discussions (see Stein and Smith, 2011) involves modeling mathematical thinking and communication, noticing and naming students' mathematical strategies, and orienting students to one another's ideas.

Opportunities for mathematical discourse can emerge throughout the school day, even for the youngest learners. Pencils are regularly needed at each table of students (How many at each table? What is the total number of pencils needed?). More milk cartons are needed from the cafeteria (How many more?). Other questions arise: How many minutes before lunch time? How can you tell? How many more cotton balls are needed for this activity? How do you know? Solving these and other problems in classroom conversation allows children to see how mathematics is an indelible aspect of daily living. As students progress through the elementary and into the middle grades, authentic opportunities for mathematical discourse increase and deepen. Engaging and meaningful mathematical activities (described in Chapter 2) encourage students to explore and make sense of number, data, and space, and to think mathematically about the world around them. Teachers can support their students' development of positive mathematical identities by acknowledging the ways identities influence their investigations of mathematics. Through structured classroom discourse, teachers can foster the development of positive mathematical identities by acknowledging students' histories and cultural backgrounds.

Equitable instruction also means that students are ensured access to rich mathematics and are well prepared for the pathways they choose. Tracking-which often manifests as early as the elementary grades-can occur through the practice of ability grouping and limiting options for students by restricting development. Instead, teachers should focus on heterogeneous grouping (see Complex Instruction, Cohen and Lotan, 1997; Featherstone et al., 2011), as well as guidance throughout this document to support the participation of all learners in rich mathematical activity.

The grade-four vignette that follows, influenced by research about supporting linguistically and culturally diverse English learners in mathematical activities, highlights
ways that teachers can build on students' existing knowledge and support their developing understandings.

Vignette: Comparing Numbers and Place Value Relationships - Grade Four, Integrated English Language Development (Integrated ELD)

Source: Tulare County Office of Education under the Creative Commons AttributionNon Commercial-Share Alike 4.0 International License.

Background: Mrs. Verners' 30 fourth graders have been learning about place value during the first few weeks of the school year and are approaching the end of the unit. The lessons and math routines focused students on grade-level standards for Number and Operations in Base Ten focused on place value. The task will be one of their first experiences within a larger task focused on the same concepts. The design relies on independent and collaborative work.

The class is comprised predominantly of Latinx students, and over half of the students are linguistically and culturally diverse learners (identified as English learners at each of the Emerging, Expanding, and Bridging levels.) Two students in the class have identified learning disabilities. The fourth-grade team of teachers at this school meets weekly to discuss and plan their math lessons, discussing instructional strategies and resources that they are using to ensure all students feel supported accessing and understanding the content. Before this lesson, the teacher used her designated-ELD time to preview and practice the discourse of "compare and contrast" in a mathematical context (i.e., more than, less than, equal to, greater than, how many more, how many times more) to give English learners the language support needed to participate in the lesson (ELD.PI.4.1).

Lesson Context: Daily lessons and classroom routines have focused on place value. Students know how to identify the place value of given digits, and they write numbers in standard, word, and expanded form. Students compare numbers using their understanding of place value and inequality symbols. They have had some experiences describing these comparisons orally and in writing. Mrs. Verners is working to develop
student understanding of how the places within the place value system are related through multiplying and dividing by ten. Students have analyzed the relationship between the value of a digit in two locations within a number. For instance, they understand that in the number 5,500, the 5 in the thousands place is ten times greater than the 5 in the hundreds place. In this task, they will explore the relationship between values of a common digit as they compare several different numbers.

Mrs. Verners designed the lesson to provide students the opportunities to apply what they have learned about the relationships within the base ten place value system and comparing numbers within the context of a real-world situation. Students initially engage with the content independently, then meet in small groups to collaborate. The strategy with the groupwork is to use a sharing of ideas to deepen student understanding of the relationship between the value of a digit located in different places within numbers. The previous lessons helped students establish a foundation through focused attention on place value concepts. Mrs. Verners and her grade-level team created opportunities to develop background knowledge regarding the places described within the task before beginning the math portion. The teachers decided to integrate a map and introductory activity during social studies to start a discussion and identify the location within the task on the map. The learning target and clusters of the CA CCSSM and California English Language Development Standards (CA ELD Standards) in focus for today's lesson are listed below.

Learning Targets: The students will organize fourth grade population data for different locations across the United States in order to compare and describe the relationships between the values of digits within the number.

CA CCSSM:

- 4.NBT. 1 - Recognize that in a multi-digit whole number, a digit in one place represents ten time what it represents in the place to its right. For example, recognize that $700 / 70=10$ by applying concepts of place value and division;
- 4.NBT. 2 - Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based
on meanings of the digits in each place, using >, $=$, and < symbols to record the results of comparisons;
- 4.OA. 1 - Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations;
- 4.OA. 2 - Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison;
- SMP. 1 - Make sense of problems and persevere in solving them;
- SMP. 7 - Look for and make use of structure.

CA ELD Standards (Expanding):

- ELD.PI.4.1 - Exchanging information and ideas with others through oral collaborative discussions on a range of social and academic topics;
- ELD.PI.4.10 - Writing literary and informational texts to present, describe, and explain ideas and information.

Task: There are almost 40,000 fourth graders in Mississippi and almost 400,000 fourth graders in Texas. There are almost 4 million fourth graders in the United States.

- We write 4 million as $4,000,000$. There are about 4,000 fourth graders in Washington, DC. Use the approximate populations given to solve.
a. How many times more fourth graders are there in Texas than in Mississippi?
b. How many times more fourth graders are there in the United States than in Texas?
c. How many times more fourth graders are there in the United States than in Washington, DC?
(Source: Illustrative Mathematics, 2016a)

Lesson Excerpts

Day 1: During social studies, Mrs. Verners introduces the math task to her students, introducing the idea of exploring populations in different locations in the United States. She gives students the task handout that includes a map of the US and asks students to identify their home state. She refers to a copy of the map under the document camera to serve as a visual. Students discuss with their small groups and share their ideas with the whole class. She asks students to shade California yellow.

Next, she asks them to discuss their location in California. Mrs. Verners models how to place a dot to represent their city in its approximate location. She reminds students of the key included on the handout, clarifying that "key" is a multiple-meaning word and asks students if they know of another way this word is used. Mrs. Verners makes a connection between a key, like a house key, and the key on their map, which is used to help you understand the symbols and colors used on the map. The conversation continues and she helps students to identify the United States, Texas, Mississippi, and Washington, DC on the map and represent them on the key. Mrs. Verners tells her students that the map will be used for the next day's math lesson.

Day 2: Mrs. Verners launches the math lesson through a three-read activity (San Francisco Unified School District, 2015). She first asks students to make sense of the context with one another, revisiting the map and telling students that they will be talking about approximate populations of fourth graders in these different locations. She asks the students to use personal whiteboard to write synonyms for "estimate" or "approximate." Informed by a quick formative check where students show their whiteboards, Mrs. Verners asks for students to share with their partner their words, highlighting some of the examples she hears on the whiteboard at the front of the classroom. Mrs. Verners says that these words (pointing to her list on the whiteboard) are synonyms that mean about or close to. She explains that when we use numbers are not exact, we sometimes use the words almost or about to say that these numbers are estimates or approximations. She says that the English word "approximate" is "aproximado" in Spanish, and asks, "Quien sabe otras palabras matemáticas que se oyen igual o similar en ingles?" (Who knows other math words that sound similar in

English?) Possible student answers: "Estimado" (estimate), "Angulo" (angle), and "Linea" (line). This reference to cognates supports linguistic development in the Spanish-speaking EL students by using their primary language as an asset to learn English. Mrs. Verner adds these words to the math cognate chart that posted in the, classroom to both elevate the value of home language and to make cross-language connections that accelerate English language proficiency.

Next, she asks students to reason with each other about relevant quantities. Mrs. Verners asks the students to estimate the number of fourth-grade students at their school. Students make individual estimates and records them on their individual whiteboards. Students share their estimates with a partner and justify how they decided on their particular estimate. She lists seven estimates on the whiteboard and asks students to discuss the estimates with their small groups to determine if all the estimates are reasonable (make sense) or not and why. Mrs. Verners asks two groups to share their thinking with the class. The explanations are similar; both state that 300 is an unreasonable estimate because they have three classes of fourth graders and each class about 30 students, not 100 students to make 300 . She tells the class that they just estimated the population of fourth graders at their school and that today they will be using the approximate populations of fourth graders of the locations they marked on their map the previous day.

She asks the class to discuss with their partners what they think population means. Mrs. Verners reminded the class to use (if needed) their sentence starters. Mrs. Verners models the use of the "I think that...because" sentence starter as one way to begin describing the meaning of population to a partner. She circulates to listen to student conversations and then asks several students to share.

Sample Sentence Starters:

- I think that...because
- I notice that...
- I agree with...
- I want to add to what...said.
- I respectfully disagree; I think...

Mrs. Verners: As I listened to you talk with your partners, I heard different ideas about what a population is. Who would like to share what you and your partner discussed? Alex.

Alex: I think population is like the amount of people in a state.
Sara: I think it could be a city too.
Mrs. Verners: Would anyone like to add on to what Alex or Sara said? Yes, Maria.

Maria: So, the population is the amount of people in a city or state.
Mrs. Verners: Yes, for this task we are going to think about the population as the number of people in a given location such as a city, state, or country.

Mrs. Verners then asks students to turn to one another and reason about what mathematical questions they might ask about populations. Once they have shared ideas, Mrs. Verners tells the students that they will be looking at the population of fourth grade students in the different locations, the places they identified on their maps. She tells the students that she going to read the task aloud and wants the students to listen carefully and point to each location on the map when she reads it in the task. In line with the 3-read protocol familiar to the students, students are asked to reread the task silently, underlining or circling important ideas in the task to help them make sense of what they are reading. Students take turns sharing something that they underlined or circled with their small group. Although teachers cannot assume that all students are able to read in their home language, translations of the task are provided.

Next, students are asked to individually complete the data table by writing the fourthgrade population of each location using digits in standard form in order to organize the population data that they were given in the task. Mrs. Verners explains that "table" is a multiple-meaning word. She explains that there are different types of tables. In math, tables are used to record information and organize data. She shows students the t-table
on their task handout and says that this is an example of a table used in math. After asking her students to begin working independently, Mrs. Verners asks for several of her students to meet her at her small group table. Here, she works with her English learners to collaboratively complete the t-table. She facilitates the conversation using the following types of questions:

- Where can you find the population of each location in the text? How is the population written?
- How can we rewrite the populations from word form to standard form?
- What are the digits in this number? What digits do we use in our base ten number system?
- What do you notice about the location of the digit 4 in the numbers in your table? What does the location of the digit 4 tell you about its value?

After working together to discuss and create their data tables, the teacher excuses her small group to return to their seats. Mrs. Verners brings the class back together and describes how they will work with their small group during the next portion of the task to answer several questions comparing the population of fourth graders in the different locations and explaining these comparisons in writing.

Mrs. Verners poses the question, "How many times greater is [blank] than [blank]? She orchestrates discussion about the difference between additive comparisons and multiplicative comparisons. She then shows the class two sentence frames that she has written on the board and reads them to the class, and tells them that they may use these frames as they are writing or they may create sentences on their own. Her sentence frames are:

- The number of fourth grades in [blank] is [blank] times as many as the fourth graders in [blank].
- There are [blank] times as many fourth graders in [blank] than [blank].

Students are asked to complete a and b collaboratively with their group, saving c to complete on their own so that Mrs. Verners can use this information to check the level of student understanding:
a. How many times more fourth graders are there in Texas than in Mississippi?
b. How many times more fourth graders are there in the United States than in Texas?
c. How many times more fourth graders are there in the United States than in Washington, DC?

The teacher circulates as students are working in small groups and ask questions to support and extend student thinking. She has the following questions at the ready, alternating as necessary based on the status of the discussion:

- What do you notice about the numbers/populations listed in your table?
- What relationship do you notice between these numbers?
- Do you notice a pattern in the place value of the digit 4 ?
- What tools might help you as you're trying to represent the place value of the 4 in each of these numbers? (base ten blocks, place value chart, etc.)
- How would you describe the relationship between the digit 4 in these numbers?
- You noticed that each place value is $\times 10$ from the place before it. How might you find the relationship between 4,000 and 4,000,000?

Mrs. Verners selects three groups to share their explanation from question a. Within each group, she selects one student to represent the group and present to the whole class. She considers students that have recently presented and intentionally selects students who have not had an opportunity to present their thinking to the whole class recently, preparing them beforehand so they can plan how they will share. While circulating around the room, she also continues efforts to support their class norm that all students have good math ideas and selects students that represent a range of strategies. Mrs. Verners asks the students who have been selected to practice what they will say to their table groups before presenting in front the whole class. After the
students share their group's explanation, Mrs. Verners asks questions to deepen student understanding and make connections between the different explanations that were presented. Next, she asks all students to reread their explanations in part a and provides them time to add on to their explanation to make it stronger or to revise their thinking.

Mrs. Verners asks the students to think about the explanations they have heard and practice with their partner. She asks them to use what they have learned from their work on parts $a \operatorname{and} b$ the task to complete part c independently. She tells the students that she is interested in looking at their work and reading their writing in part c so that she can learn about what students understand about comparing numbers. Students write their explanations independently.

Teacher Reflection and Next Steps: Mrs. Verners collects the student work and reviews their independent work and explanation from part c. As she reads, she analyzes whether or not students were able to generalize their place value understanding to describe the relationship between the digit 4 in the population of fourth graders in Washington DC, and the United States. Students have had experience describing the relationship between a digit in a given place value and the place to its right or left; however, this question asks them to describe the relationship of a digit three places to the left. As Mrs. Verners analyzes the student work, she discovers that while the majority of her students understand and are able to describe these place value relationships, a small group of students are struggling to express their thoughts in writing. This small group contains students with a range of needs, including linguistically and culturally diverse English learners (two designated as Emerging ELs, one Expanding EL), one student with a learning disability, and two students that she has noticed are struggling with place value concepts. She decides that she will work with these students in small groups the following day to determine if they are having trouble with the concept or if they are having difficulty using writing to explain their thinking. Mrs. Verners sees that students were able to deepen their understanding of place value relationships through the use of this task and decides that she would like to give the students the opportunity to engage in another task to further develop these concepts
before the end of the place value unit.
In the context of California schools, the phrase "all students" is inclusive of all groups, including students from a range of diverse linguistic and cultural backgrounds and learning needs. Linguistically and culturally diverse students who are learning English face a dual challenge in English-only settings as they endeavor to acquire mathematics content and the language of instruction simultaneously. Teachers can support their progress, in part, by drawing on students' existing linguistic and communicative ability and making language resources available, particularly during small group work. The ability for the child to use their home language in these early years can ensure they are able to express their knowledge and thinking and not be limited by their level of English proficiency. Teachers can also highlight specific vocabulary as it arises in context or revoice students' mathematical contribution in more formal terms, describing how the precise mathematical meaning might differ from the common use of the same word (e.g., words like "yard," "difference," or "area"). All students, including students with learning differences, will benefit from these and similar attentions during whole class, small group/partner, or independent work periods. Additional discussion of equity-based shifts in the teacher's role is found in Chapter 2.

Mathematics: Investigating and Connecting, Transitional Kindergarten Through Grade Two

Young learners come to school with a rich set of mathematical knowledge and experiences. Starting from infancy and into the toddler years, children develop a knowledge base about mathematics. Infancy research shows that babies demonstrate an understanding about number essentially from birth (National Research Council, 2001). Some infants and most young children show that they can understand and perform simple addition and subtraction by at least three years of age, often using objects (National Research Council, 2001). These studies suggest that children enter the world prepared to notice and engage in it quantitatively.

In the early grades, students spend much of their time exploring, representing, and comparing whole numbers with a range of different kinds of manipulatives. For a
student who is interested in dinosaurs, the opportunity to sort pictures or toy stand-ins of the dinosaurs into herbivores and carnivores (or other interesting attributes) and then counting the number of dinosaurs in each category may be a highly engaging activity. Some students enjoy the challenge of recreating structures with building blocks that connect or snap together, or erecting with magnetic builders. Students might create a structure that other students duplicate, describe, and analyze.

Finally, nurturing of students' mathematical explorations may create a classroom atmosphere where students believe they can solve problems and learn engaging new concepts. Discovering repeating digits in a hundreds chart can be powerful for a young student and spark new curiosities about numbers that can be investigated. Students might also be astonished to realize that one added to any whole number equals the next number in the counting sequence. Activities like these nurture students' interest and encourage future mathematical investigations.

Mathematics in the early elementary grades is rooted in exploration and discovery that build on and develop this early knowledge base. The CA CCSSM offer guidelines ${ }^{1}$ for both what mathematics topics are considered essential to learn and how young mathematicians should engage in the discipline through the practices (Standards for Mathematical Practice, or SMPs). The SMPs are central to the mathematics classroom and teachers should be intentional about teaching mathematical content through the SMPs. From the earliest grades, mathematics involves making sense of and working through problems. In kindergarten, first, and second grades, students begin to build the understanding that doing mathematics involves solving problems, as well as discussing how they solved them through a range of approaches. Young students also reason abstractly and quantitatively. They begin to recognize that a number represents a specific quantity and connect the quantity to written symbols. For example, a student may write the numeral 11 to represent an amount of objects counted, select the correct number card 17 to follow 16 on a calendar, or build two piles of counters to compare

[^0]amounts of 5 and 8 . In addition, young students begin to draw pictures, manipulate objects, or use diagrams or charts to express quantitative ideas.

Modeling and representing is central to students' early experiences with mathematizing their world. In early grades, students begin to represent problem situations in multiple ways-by using numbers, objects, words, or mathematical language; acting out the situation; making a chart or list; drawing pictures; or creating equations, and so forth. While students should be able to adopt these representations as needed, they need opportunities to connect the different representations and explain the connections. For example, a student may use cubes or tiles to show the different number pairs for five, or place three objects on a 10-frame and then determine how many more are needed to "make a 10." Students rely on manipulatives and other visual and concrete representations while solving tasks and record an answer with a drawing or equation. Students need to be encouraged to answer questions such as, "How do you know?" which reinforces their reasoning and understanding and helps students develop mathematical language.

What is a Model?

Modeling, as used in the CA CCSSM, is primarily about using mathematics to describe the world. In elementary mathematics, a model might be a representation such as a math drawing or a situation equation (operations and algebraic thinking), line plot, picture graph, or bar graph (measurement), or building made of blocks (geometry). In grades six through seven, a model could be a table or plotted line (ratio and proportional reasoning) or box plot, scatter plot, or histogram (statistics and probability). In grade eight, students begin to use functions to model relationships between quantities. In high school, modeling becomes more complex, building on what students have learned in kindergarten through grade eight. Representations such as tables or scatter plots are often intermediate steps rather than the models themselves. The same representations and concrete objects used as models of real-life situations are used to understand mathematical or statistical concepts. The use of representations and physical objects to understand mathematics is sometimes referred to as "modeling mathematics," and the
associated representations and objects are sometimes called "models."

Source: The University of Arizona (n.d.).

Students in the early grades must have frequent opportunities for mathematical discourse, including opportunities to construct mathematical arguments and attend to, make sense of, and critique the reasoning of others (SMP.3). Young students begin to develop their mathematical communication skills as they participate in mathematical discussions involving questions such as, "How did you get that?" and, "Why is that true?" They explain their thinking to others and respond to others' thinking. Students can learn to adopt and use these types of questions. For example, sentence frames or charts that teacher can refer to on the wall—especially if they reflect work generated by the class-would be helpful in building activities that support long-term engagement with mathematics. These language support tools are effective for all students and are especially important for English Learners. In activities like Compare and Connect (Stanford University, 2017), students compare two mathematical representations (e.g., place value blocks, number line, numeral, words, fraction blocks) or two methods (e.g., counting up by fives, going up to 30 and then coming back down three more). In this activity, teachers might ask the following:

- Why did these two different-looking strategies lead to the same results?
- How do these two different-looking visuals represent the same idea?
- Why did these two similar-looking strategies lead to different results?
- How do these two similar-looking visuals represent different ideas?

In another activity, Critique, Correct, Clarify (Stanford University, 2017), students are provided with ambiguous or incomplete mathematical arguments (e.g., "two hundreds is more than 25 tens because hundreds are bigger than tens") asked to practice respectfully making sense of, critiquing, and suggesting revisions together.

As students engage in mathematical discourse, they begin to develop the ability to reason and analyze situations as they consider questions such as, "Do you think that would happen all the time?" and, "I wonder why...?" These questions drive
mathematical investigations. Students construct arguments not only with words, but also using concrete referents, such as objects, pictures, drawings, and actions. They listen to one another's arguments, decide if the explanations make sense, and ask appropriate questions. For example, to solve 74-18, students might use a variety of strategies to discuss and critique each other's reasoning and strategies. The process of using student discussion and argumentation to drive learning is explored further in Chapter 4.

Through experiences with math centers, collaborative tasks, and other rich, open-ended activities, young learners understand ways to use appropriate tools purposefully and strategically. Younger students begin to consider tools available to them when solving a mathematical problem and decide when certain tools might be helpful. In environments that support this, a kindergartner may decide to use available linking cubes to represent two quantities and then compare the two representations side by side—or, later, make math drawings of the quantities. In grade two, while measuring the length of the hallway, students are able to explain why a yardstick is more appropriate to use than a ruler. A student decides which tools may be helpful to use depending on the problem or task and explain why they use particular mathematical tools. Students use tools such as counters, place-value (base-ten) blocks, hundreds number boards, concrete geometric shapes (e.g., pattern blocks or three-dimensional solids), and virtual representations to support conceptual understanding and mathematical thinking. Students should be encouraged to reflect on and answer questions such as, "Why was it helpful to use?"

From early on, children look for and make use of mathematical structure. For instance, students recognize that $3+2=5$ and $2+3=5$. Students use counting strategies—such as counting on, counting all, or taking away-to build fluency with facts to 5 . Students notice the written pattern in the "teen" numbers-that the numbers start with 1 (representing one 10) and end with the number of additional ones. While decomposing two-digit numbers, students realize that any two-digit number can be broken up into tens and ones (e.g., $35=30+5,76=70+6$). They use structure to understand subtraction as an unknown addend problem (e.g., $50-33=$ [blank] can be written as 33 + [blank] = 50 and can be thought of as, "How much more do I need to add to 33 to get to 50?"). Children also thrive when they have opportunities to look for and express
regularity in repeated reasoning. In the early grades, students notice repetitive actions in counting, computations, and mathematical tasks. For example, the next number in a counting sequence is one more when counting by ones and 10 more when counting by tens (or one more group of 10). Students should be encouraged to answer questions based on, "What would happen if ...?" and "There are 8 crayons in the box. Some are red and some are blue. How many of each could there be?" Kindergarten students realize eight crayons could include four of each color $(8=4+4), 5$ of one color and 3 of another $(8=5+3)$, and so on. Grade-one students might add three one-digit numbers by using strategies such as "make a ten" or doubles. Students recognize when and how to use strategies to solve similar problems. For example, when evaluating $8+7+2$, a student may say, "I know that 8 and 2 equals 10 , then I add 7 to get to 17. It helps if I can make a ten out of two numbers when I start." The process of using student discussion and argumentation to drive learning is explored further in Chapter 4.

Students may arrive to the early elementary grades with unfinished learning from transitional kindergarten, kindergarten, and grade one. When this occurs, it is important that teachers provide support without making premature determinations that students are low achievers, require interventions, or need to be placed in a group learning different grade-level standards. Students develop at different times and at different rates; what educators perceive as an apparent lack of understanding may not indicate a real lack of understanding. The implementation of mathematics routines that encourage students to use language and discuss their mathematics work are of benefit to all students, particularly those who are learning English or who are challenged by the demands of academic language for mathematics. Such supports allow educators to help students strengthen understandings that may have been weak or incomplete in their previous learning without formal intervention program. When more support is warranted, teachers can access California's Multi-Tiered System of Support (MTSS) (California Department of Education, n.d.), which is designed to provide the means to quickly identify and meet the needs of all students.

Standards-based instruction should be organized to support investigating big ideas in mathematics and connecting content and mathematical practices within and across
grade levels. Big ideas in TK-2 mathematics content connect in the following four ways:

Content Connections

- (CC1) Communicating Stories with Data
- (CC2) Exploring Changing Quantities
- (CC3) Taking Wholes Apart, Putting Parts Together
- (CC4) Discovering Shape and Space

These content connections develop when students have opportunities to investigate mathematics. Mathematical investigations can fall into one or more of these Drivers of Investigation (DI):

- (DI1) Making Sense of the World (Understand and Explain)
- (DI2) Predicting What Could Happen (Predict)
- (DI3) Impacting the Future (Affect)

Students might make sense of their world (D1) by working with data (CC1) or exploring the decomposition of number (CC2). Students might discuss solutions to a community problem (D1) by exploring changing quantities related to the problem topic (CC4) or examining the use of space within the problem context (CC3). Investigations should be situated in contexts that invite students to wonder in ways that motivate or require particular mathematical activity to drive the investigation. Any particular investigation can meaningfully include several CA CCSSM domains, such Measurement and Data, Number and Operations, and so on, through several of the SMPs as they conduct their investigations. Chapter 4 illustrates how Content Connections, Drivers of Investigations, and three SMPs come together across the grade bands.

Figure 6.1: Content Connections, Mathematical Practices and Drivers of Investigation

Link to long description

Figure 6.2 illustrates the connections among the features of such an investigative, connected approach. The intersections between Content Connections, the Standards for Mathematical Practice, and the Drivers of Investigation can guide instructional design. For example, students can make sense of the world (DI1) by exploring changing quantities (CC2) through classroom discussions wherein students have opportunities to construct viable arguments and critique the reasoning of others (SMP.3). These ideas are first illustrated for transitional kindergarten through grade two and will be revisited later in this chapter for grades three through five.

This document presents a "big idea" approach to mathematics to support teachers and students in making consistent, productive use of the mathematical practices and recognizing the connections among mathematics topics.

Figure 6.2: A Progression Chart of Big Ideas through Transitional Kindergarten through Grade Two:

Content Connections	Big Ideas: Grade TK	Big Ideas: Grade K	Big Ideas: Grade 1	Big Ideas: Grade 2
Communicating Stories with Data	 Order	 Describe Data	Make sense of Data	Represent Data
Communicating Stories with Data	Look for Patterns	n/a	Measuring with Objects	 Compare Objects
Exploring Changing Quantities	Measure and Order	How Many?	Measuring with Objects	Dollars and cents
Exploring Changing Quantities	Count to 10	Bigger or Equal	Clocks and Time	Problem solving with measures
Exploring Changing Quantities	n/a	n/a	Equal Expressions	n/a
Reasoning about Equality	n/a			
Quantities Changing	n/a	Being flexible within 10	Tens and Ones	Skip Counting to 100
Taking Wholes Apart, Putting Parts Together	Create Patterns	Place and position of numbers	n/a	Number Strategies
Taking Wholes Apart, Putting Parts Together	Patterns for	Model with numbers	n/a	n/a
Taking Wholes Apart, Putting Parts Together	See and use Shapes	Shapes in the world shapes use	Equal parts inside shapes	Seeing fractions in shapes
Discovering shape and space	See and			

Content Connections	Big Ideas: Grade TK	Big Ideas: Grade K	Big Ideas: Grade 1	Big Ideas: Grade 2
Discovering shape and space	Make and measure shapes	Making shapes from parts	n/a	Squares in an array
Discovering shape and space	Shapes in space	n/a	n/a	n/a

CC1: Communicating Stories with Data

The ubiquity of data means that even the youngest learners use it to make sense of the world. This includes using data about measurable attributes. In the early grades, students describe and compare measurable attributes, classify objects and count the number of objects in each category ${ }^{2}$. As they progress across the early grades, students represent and interpret data in increasingly sophisticated ways. Chapter 5 offers greater detail about how data can be explored across the grades through meaningful mathematical investigations. This Content Connection invites students to:

- Describe and compare measurable attributes (K.MD.A.1)
- Classify objects and count the number of objects in each category (K.MD.B.3)
- Measure lengths indirectly and by iterating length units (1.MDA.1, 1.MDA.2)
- Tell and write time (1.MD.B.3)
- Represent and interpret data (1.MD.C.4, 2.MD.C.8)
- Measure and estimate lengths in standard units (2.MD.A.1, 2.MD.A.2, 2.MD.A.3, 2.MD.A.4)
- Relate addition and subtraction to length (2.MD.B.5, 2.MD.B.6)
- Work with time and money (2.MD.C.7)

Children are curious about the world around them, and might wonder about their classmates' favorite colors, kinds of pets, or number of siblings. Young learners can collect, represent, and interpret data about one another. Students can use graphs and charts to organize and represent data about things in their lives. This data supports the

[^1]asking and answering of questions about the information in charts or graphs, and can allow them to make inferences about their community. Charts and graphs may be constructed by groups of students as well as by individual students.

Students learn that many attributes—such as lengths and heights—are measurable. Early learners develop a sense of measurement and its utility using non-standard units of measurements. Through explorations, students discover the utility of standard measurements.

This Content Connection can serve as the foundation for mathematical investigations around measurement and data. In an activity on comparing lengths, called Direct Comparisons, students place any three items in order, according to length:

- Pencils, crayons, or markers are ordered by length.
- Towers built with cubes are ordered from shortest to tallest.
- Three students draw line segments and then order the segments from shortest to longest.

In an activity on Indirect Comparisons, students model clay in the shape of snakes. With a tower of cubes, each student compares their snake to the tower. Then students make statements such as, "My snake is longer than the cube tower, and your snake is shorter than the cube tower. So, my snake is longer than your snake." (Adapted from ADE 2010.)

CC2: Exploring Changing Quantities

Young learners' explorations of changing quantities support their development of meaning for operations, such as addition, subtraction, and early multiplication or division. This Content Connection can serve as the basis for mathematical investigations about operations. Students build on their understanding of addition as putting together and adding to and of subtraction as taking apart and taking from. Students use a variety of models—including discrete objects and length-based models (e.g., cubes connected to form lengths) to model add-to, take-from, put-together, and take-apart—and compare situations to develop meaning for the operations of addition and subtraction and develop strategies to solve arithmetic problems with these
operations. Students understand connections between counting and addition and subtraction (e.g., adding two is the same as counting on two). They use properties of addition to add whole numbers and to create and use increasingly sophisticated strategies based on these properties (e.g., "making 10s") to solve addition and subtraction problems within 20. By comparing a variety of solution strategies, children build their understanding of the relationship between addition and subtraction. By second grade, students use their understanding of addition to solve problems within 1,000 and they develop, discuss, and use efficient, accurate, and generalizable methods to compute sums and differences of whole numbers. Students in primary grades become proficient in addition and subtraction using methods that make sense to them; this prepares them for the use of standard algorithms starting in grade 4. See also the table Development of Standard Algorithms across Grades TK-6 in this chapter.

Investigating mathematics by exploring changing quantities invites students to:

- Know number names and the count sequence (K.CCA.1, K.CCA.2., K.CCA.3).
- Count to tell the number of objects (K.CC.B.4, K.CC.B.5).
- Compare numbers (K.CC.C.6, K.CC.C.7).
- Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from (K.OA.A1, K.OA.A2, K.OA.A3, K.OA.A4, K.OA.A5).
- Represent and solve problems involving addition and subtraction (1.OA.A.1, 1.OA.A.2, 2.OA.A.1).
- Understand and apply properties of operations and the relationship between addition and subtraction (1.OA.B.3, 1.OA.B.4).
- Add and subtract within 20 (1.OA.C.5, 1.OA.C.6, 2.OA.B.2).
- Work with addition and subtraction equations (1.OA.D.7, 1.OA.D.8).
- Work with equal groups of objects to gain foundations for multiplication (2.OA.C.3, 2.OA.C.4).
- Look for and make use of structure (SMP.7).
- Look for and express regularity in repeated reasoning (SMP.8).

Young learners benefit from ample opportunities to become familiar with number
names, numerals, and the count sequence. While mathematical concepts and strategies can be explored and understood through reasoning, the names and symbols of numbers and the particular count sequence is a convention to which students become accustomed. Conceptually, students come to develop particular foundational ideas through experiences with early counting: cardinality and one-toone correspondence.

In transitional kindergarten (TK), many opportunities arise for conversations about counting. Consider the exchange below:

Nora: "Sami isn't being fair. He has more trains than I do."
Teacher: "How do you know?"
Nora: "His pile looks bigger!"
Sami: "I don't have more!"
Teacher: "How can we figure out if one of you has more?"
Nora: "We could count them."
Teacher: "Okay, let's have both of you count your trains."
Sami: "One, two, three, four, five, six, seven."
Nora: "One, two, three, four, five, six, seven." (Fails to tag and count one of her eight trains.)

Sami: "She skipped one! That's not fair!"
Teacher: "You are right; she did skip one. We count again and be very careful to make sure not to skip—but can you think of another way that we can figure out if one of you has more?"

Sami: "We could line them up against each other and see who has a longer train."

Teacher: "Okay, show me how you do that. Sami, you line up your trains, and Nora, you line up your trains."

Opportunities to count and represent the count as a quantity, whether verbally or symbolically, allow students to recognize that, in counting, each item is counted exactly once and that each count corresponds to a particular number. Using manipulatives or other objects to count, students learn to organize their items to facilitate this one-to-one correspondence. Students also learn that the number at end of the count represents the full quantity of items counted and that each subsequent number represents an additional one added to the count. In Counting Collections (DREME TE, n.d.), teachers ask young children to do the following:

- Count to figure out how many are in a collection of objects (a set of old keys, teddy bear counters, rocks collected from the yard, arts and crafts materials, etc.).
- Make a written representation of what they counted and how they counted it.

Source: Research and Play, n.d.
There are many benefits when younger learners are provided opportunities to represent quantities with number words and numerals, as well as to represent number words and numerals as quantities. Activities related to this Content Connection can support
teachers as they create opportunities for students to learn and grow.

To highlight representing quantities with number words in transitional kindergarten, teachers can add questions about numbers that arise during class reading activities. In a book about dogs, for instance, on the page showing a picture of two dogs, ask how many dogs there are, and then ask questions such as:

- How many legs does one dog have?
- How many legs do two dogs have?
- If one dog left the page, how many legs would be left?

Teachers can align instruction with proven English language development strategies, such as the use of gestures, facial expressions, and other non-verbal movements as communication strategies, sentence frames or revoicing student answers to support the participation for all learners, including students learning English.

To integrate representing number words as quantities, teachers can build steps for students to represent with their fingers the addends in a story problem. This can be particularly effective during small- or whole-group time. Individual students can explain to their classmates how they decided how many fingers to choose for each hand. For example, "One day, two baby dinosaurs hatched out of their eggs. The mama triceratops was so excited that she called to her auntie to come and see. Then four more baby dinosaurs hatched! How many dinosaurs hatched all together? Marisol, can you show me how many fingers you used?" Note that children across different communities of origin learn to show numbers on their fingers in different ways. Children may start with the thumb, the little finger, or the pointing finger. Support all of these ways of showing numbers with fingers.

In Feet Under the Table (Confer, 2005), a group of children sit at a table with counters, pencils, and paper. Without investigating or looking, students figure out how many feet are under the table. They can use mathematical tools, such as cubes or drawings, that will help them, and then represented their number on paper. Students then share how they represented the feet on their paper and how many feel they think there are
altogether. When all the students are finished, they then peek under the table to check their answers.

Developmentally, children become more efficient counters through experiences that occur over time and in ways that support early addition and subtraction. Young learners can build on what they know about counting to add on to an original count. For example, tasks from Cognitively Guided Instruction (Carpenter et al., 2014) ask students to create a set of a particular amount, say five cubes and to then add three more cubes. Students can draw on what they know to first count out five cubes. Students might then use different strategies to add on three more. Some students might count out three more cubes separately, then start from one again and count out all eight cubes. Other students might count on from five, naming the numbers as they go along-six, seven, eight cubes. Students might also draw on other possible strategies.

Maria has 28 Pokémon cards in her collection. Her mom gives her some more cards for her birthday. Now Maria has 61 cards. How many cards did her mom give her for her birthday?

Teachers can notice student strategies as formative assessment, recognizing how their young learners become increasingly efficient counters. Young learners also draw on their counting strategies to develop early subtraction sense. Cognitively Guided Instruction tasks might prompt students to begin with, say, eight cookies, then note that three cookies were eaten. Students might count out eight cookies with manipulative like counting cubes, and then employ a range of strategies to figure out how to "take
away" three cookies. Students might remove three cubes from the original set and then count the remaining cubes to figure out how many remain. Other students might count backwards from the original set, landing of eight cookies.

Common Addition and Subtraction Situations*

Common Addition and Subtraction Situations	Result Unknown	Change Unknown	Start Unknown
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? $2+3=\square$	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were 5 bunnies. How many bunnies hopped over to the first two? $2+\square=$	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were 5 bunnies. How many bunnies were on the grass before?
Take from	Five apples were on the table. I ate 2 apples. How many apples are on the table now? $5-2=\square$	Five apples were on the table. I ate some apples. Then there were 3 apples. How many apples did I eat?	Some apples were on the table. I ate 2 apples. Then there were 3 apples. How many apples were on the table before? $\square-2=$
	$\square-\square=$		

Common Addition and Subtraction Situations	Total Unknown	Addend Unknown	Both Addends Unknown
Put together/Take apart ‡	Three red apples and 2 green apples are on the table. How many apples are on the table?	Five apples were on the table. Three are red, and the rest are green. How many apples are green?	Grandma has 5 flowers. How many can she put in her red vase and how many in her blue vase?
	$3+2=\square$	$3+\square=,-3=\square$	$5=0+5,5=5+0$ $5=1+4,5=4+1$ 5
		$5=2+3,5=3+2$	

Common Addition and Subtraction Situations	Difference Unknown	Bigger Unknown	Smaller Unknown
Compare**	("How many more?" version): Lucy has 2 apples. Julie has 5 apples. How many more apples does Julie have than Lucy? ("How many fewer?" version): Lucy has 2 apples. Julie has 5 apples. How many fewer apples does Lucy have than Julie? $2+\square=,-2=\square$	(Version with more): Julie has 3 more apples than Lucy. Lucy has 2 apples. How many apples does Julie have? (Version with fewer): Lucy has 3 fewer apples than Julie. Lucy has 2 apples. How many apples does Julie have? $2+3=\square, 3+2=$	(Version with more): Julie has 3 more apples than Lucy. Julie has 5 apples. How many apples does Lucy have? (Version with fewer): Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? $-3=\square, \square+=5$

*Adapted from Boxes 2-4 of Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity (National Research Council, Committee on Early Childhood

 Mathematics 2009, 32-33).\ddagger Either addend can be unknown, so there are three variations of these problem situations. "Both Addends Unknown" is a productive extension of this basic situation, especially for small numbers less than or equal to 10 .
\dagger These take-apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign (=), help children understand that the equal sign does not always mean makes or results in, but does always mean is the same number as.
**For the "Bigger Unknown" or "Smaller Unknown" situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.

Students will use different strategies to solve problems when teachers give the time and space to do so. The 5 Practices for Orchestrating Productive Mathematical Discussions (Smith and Stein, 2011) offers useful instructional strategies to prepare for productive lessons with students. The five practices identified by the authors are:

- Anticipating likely student responses
- Monitoring students' actual responses
- Selecting particular students to present their mathematical work during the whole class discussion
- Sequencing the student responses
- Connecting different students' responses-to each other and to key mathematical ideas.

Before offering students problems to discuss and solve together, teachers should work through the problem themselves, anticipating what strategies students might use, as well as what struggles and misconceptions students might bring to their work. Teachers should explore the various methods that arise as students work to understand general properties of operations. For example, in a number talk on the problem $8+7$, students might come up with and share the following computation strategies:

Student 1: (Making 10 and decomposing a number) "I know that 8 plus 2 is 10 , so I decomposed (broke up) the 7 into a 2 and a 5 . First, I added 8 and 2 to get 10 , and then I added the 5 to get $15 . "$
This explanation could be represented as: $8+7=(8+2)+5=10+5=15$.

Student 2: (Creating an easier problem with known sums) "I know 8 is $7+1$. I also know that 7 and 7 equal 14 . Then I added 1 more to get 15 ."

This explanation could be represented as: $8+7=(7+7)+1=15$.

The game "Pig,"3 found on YouCubed (Youcubed, n.d.a), can be played to practice addition. The game involves students using dice (or an app to simulate a dice roll) in a competition to be the first player to roll results that reach 100. Students take turns rolling the dice and determine the sum. Students can either stop and record that sum or continue rolling and add the new sums together as many times as they choose. When they decide to stop, they record the current total and add it to their previous score. Note

[^2]that students should build understanding through activities that draw on concrete and representational approaches to operations before engaging in abstract fluency games. Other resources for addition activities include the National Council of Teachers of Mathematics' (NCTM) Illuminations and Illustrative Mathematics.

Classroom activities can also support students developing understanding of the equal sign as meaning that the quantity on one side of the equal sign must be the same quantity as on the other side of the equal sign. For example, the "Moving Colors" task (Youcubed, n.d.b), explores equality as students move around the room. Students are given red or yellow colored circles (or other shapes). Teachers ask, "How many students have red circles and how many have yellow circles?" With appropriate accommodations, students encouraged to get up and move around the room to work this out. Teachers ask, "How can we show that we have an equal number of each color or more of one color than the other color?"

Methods Used for Solving Single-Digit Addition and Subtraction Problems

 Level 1: Direct Modeling by Counting All or Taking AwayRepresent the situation or numerical problem with groups of objects, a drawing, or fingers. Model the situation by composing two addend groups or decomposing a total group. Count the resulting total or addend.

Level 2: Counting On

Embed an addend within the total (the addend is perceived simultaneously as an addend and as part of the total). Count this total, but abbreviate the counting by omitting the count of this addend; instead, begin with the number word of this addend. The count is tracked and monitored in some way (e.g., with fingers, objects, mental images of objects, body motions, or other count words).

For addition, the count is stopped when the amount of the remaining addend has been counted. The last number word is the total. For subtraction, the count is stopped when the total occurs in the count. The tracking method indicates the difference (seen as the unknown addend).

Level 3: Converting to an Easier Equivalent Problem

Decompose an addend and compose a part with another addend.
Source: Adapted from UA Progressions Documents, 2011a.

CC3: Taking Wholes Apart, Putting Parts Together

 Children enter school with experience at taking wholes apart and putting parts together, a task that occurs in everyday activities such as slicing pizzas and cakes, building with blocks, clay, or other materials. Decomposing challenges and ideas into manageable pieces, and assembling understanding of smaller parts into understanding of a larger whole, are fundamental aspects of using mathematics. Often these processes are closely tied with SMP. 7 (Look for and make use of structure). In the early grades, such investigations might include composing and decomposing the number 5 into parts such as 1 and 4 or 2 and 3 , using manipulatives. This Content Connection spans and connects many typically-separate content clusters. For example, students might also decompose shapes, which connects to CC4.Understanding numbers, including the structure of our number system (place value or base 10) and relationships between numbers begins with counting and cardinality and extends to a beginning understanding of place value. Young learners use numbers, including written numerals, to represent quantities and to solve quantitative problems, such as counting objects in a set; counting out a given number of objects; comparing sets or numerals; and modeling simple joining and separating situations with sets of objects. As they progress across the early grades, students develop, discuss, and use strategies to compose and decompose numbers, noticing the numbers that exist inside numbers. Through activities that build number sense, they understand how numbers work and how they relate to one another.

Investigating mathematics by taking wholes apart and putting parts together invite students to:

- Work with numbers 11-19 to gain foundations for place value (K.NBT.A.1).
- Extend the counting sequence (1.NBT.A.1).
- Understand place value (1.NBT.B.2, 1.NBT.B.3, 2.NBT.A.1, 2.NBT.A.2,
2.NBT.A.3, 2.NBT.A.4).
- Use place value understanding and properties of operations to add and subtract (1.NBT.C.4, 1.NBT.C.5, 1.NBT.C.6, 2.NBT.B.5, 2.NBT.B.6, 2.NBT.B.7, 2.NBT.B.8, 2.NBT.B. 9).
- Look for and make use of structure (SMP.7)

Understanding the concept of a ten is fundamental to young students' mathematical development. This is the foundation of the place-value system, which can be productively investigated through this Content Connection. Young children often see a group of 10 cubes as 10 individual cubes. Activities can support students in developing the understanding of 10 cubes as a bundle of 10 ones, or a ten. Students can demonstrate this concept by counting 10 objects and "bundling" them into one group of 10. Working with numbers between 11-19 are early ways to build the idea of numbers structured as a bundle of ten and remaining ones.

In The Pocket Game (Confer, 2005; Youcubed, n.d.c), children explore the smaller numbers inside larger numbers. Using number cards, students determine which of two numbers is larger, then place both numbers in a paper pocket labeled with the larger number. After playing the game, students are grouped to discuss what they notice about the numbers inside the different pockets, ultimately seeing that each pocket number contains all the smaller numbers within. After the discussion, teachers can prompt
students to predict which numbers they will find in the paper pocket labeled "three" and rationalize their predictions, encouraging them to examine the paper pockets one by one and talk about what they notice (and see if their predictions were accurate). Conversation should focus on why those numbers were inside each pocket and why other numbers were not.

After the game is played periodically over a number of weeks, teachers can facilitate a discussion about why the pockets look the way they do at the end of a game. For example, while viewing a pocket labeled "two," students might be asked which numbers they think will be inside. With predictions recorded, teachers can facilitate an examination of the pocket and discuss why there are only ones and twos in the pocket. This continues as students question why some numbers are not in the pocket. Later in the year, revisit the game again. When they finish the game, they will figure out which paper pocket has the most cards. In the activity "Race for a Flat," two teams of two players each roll number cubes in a place value game. The players find the sum of the numbers they roll and take Units cubes to show that number. Then they put their Units on a place value mat. When a team gets 10 Units or more, they trade 10 Units for one Rod. As soon as a team gets blocks worth 100 or more, they make a trade for one Flat. The first team to complete this wins the game.

Students in the early grades will be working with whole numbers, and linear representations are important. Transitional kindergarten through grade two teachers may consider the effect of using number paths (Gardner, 2013). While number lines are common in the early elementary grades, number paths are a particularly useful tool for students. As Gardner states:
"A number line uses a model of length. Each number is represented by its length from zero. Number lines can be confusing for young children. Students have to count the "hops" they take between numbers instead of counting the numbers themselves. Students' fingers can land in the spaces between numbers on a number line, leaving kids unsure which number to choose. A number path is a counting model. Each number is represented within a rectangle and the rectangles can be clearly counted. A number path provides a more supportive model of numbers, which is important as we want models that consistently help students build confidence and accurately solve problems."

The Learning Mathematics through Representations project (University of California, Berkeley, n.d.) also offers activities for early and upper elementary grades that prepare students to make later connections to fractions. Fair sharing problems also support
children's developing understanding of fraction concepts through explorations with grouping (Empson, 1999; Empson and Levi, 2011).

CC4: Discovering Shape and Space

Young learners possess natural curiosities about the physical world. In the early grades, students learn to describe their world using geometric ideas (e.g., shape, orientation, spatial relations). They identify, name, and describe basic two-dimensional shapes, such as squares, triangles, circles, rectangles, and hexagons, presented in a variety of ways (e.g., with different sizes and orientations). They engage in this process with three-dimensional shapes as well, such as cubes, cones, cylinders, and spheres. They use basic shapes and spatial reasoning to model objects in their environment and to construct more complex shapes. As they progress through the early grades, students compose and decompose plane or solid figures (e.g., put two triangles together to make a quadrilateral) and begin understanding part-whole relationships as well as the properties of the original and composite shapes. As they combine shapes, they recognize them from different perspectives and orientations, describe their geometric attributes, and determine how they are alike and different, thus developing the background for measurement and for initial understandings of properties such as congruence and symmetry.

Investigating mathematics by discovering shape and space invite students to:

- Identify and describe shapes (K.G.A.1, K.G.A.2, K.G.A.3).
- Analyze, compare, create, and compose shapes (K.G.B.4, K.G.B.5, K.G.B.6)
- Reason with shapes and their attributes (1.G.A.1, 1.G.A.2, 1.G.A.3, 2.G.A.1, 2.G.A.2, 2.G.A.3).

Young learners can begin to explore the idea of classifying objects in relation to particular attributes-color, size, and shape. Students can build on these early experiences to identify geometric attributes at a fairly early age. In grades one and two, many teachers introduce terms like vertex, edge, and face. Students need ample time to explore these attributes and make sense of the ways they relate to one another and particular geometric shapes. Young learners often recognize shapes by appearance and need time to explore attributes and their relationship to shapes.

Teachers can provide opportunities for young learners to compose and decompose shapes around characteristics or properties and to explore typical examples of shapes, as well as variants, and both examples and non-examples of particular shapes. Classroom discussions can also surface and address common misconceptions students have about shapes, such as triangles always rest on a side and not on a vertex or that a square is not a rectangle.

In an activity on sorting shapes, students sort a pile of squares and rectangles into two groups. They discuss how the rectangles and squares are alike and how they are different. After students demonstrate an understanding of the differences between squares and rectangles, the teacher provides each student with one square or rectangle cutout. The teacher creates two groups-one side of the classroom includes students with the square cutouts, while the students with rectangle cutouts stand on the opposite side of the room. The differences in the rectangle and square cutouts (size and color) allow the students focus on the shape attributes as they compare in and across groups. Another activity, based on the popular board game Guess Who?, offers students the opportunity to reason about the relationship between attributes and geometric shapes. In "Guess What?" the objective for students to guess an opponent's mystery shape before the opponent guesses theirs. Players take turns asking "yes" or "no" questions about character attributes (e.g., "Does your shape have angles?"). Shapes that no longer fit the description of the opponents' mystery shape are eliminated by flipping card holders over. The first player to correctly guess the other players' mystery shape wins. Students can also use pattern blocks, plastic shapes, tangrams, or online manipulatives to compose new shapes. Teachers can provide students with cutouts of shapes and ask them to combine the cutouts to make a particular shape or to create shapes of their own. Peers can then work together to recreate or decompose one another's shapes. When students work in pairs, it is helpful if linguistically diverse students work with someone who is bilingual and speaks their home language so that they may use either language as a resource in developing the concepts and mathematical language.

Classroom discourse is an important aspect of such activities. It may be valuable to challenge students to test ideas about shapes using a variety of examples for a category, asking open-ended questions, such as:

- "What do you notice about your shape?"
- "What happens if you try to draw a shape with just one side?"

Such mathematics conversations are important even for the youngest learners. Teachers can provide access to sample questions as needed. Transitional kindergarten teachers can take up students' own questions and curiosities as an opportunity to explore shapes. Consider the following exchange:

Mae: Is this a triangle? (Holds up a square.)
Teacher: What do you think? (Asks other students in the small group to contribute.)

Students (in unison): No!
Teacher: Why not? Can you share how you can tell?
Zahra: Because a triangle doesn't have four sides.
Teacher: I heard you say that a triangle doesn't have four sides. How many sides does a triangle have?

Mae: Three!
Teacher: So, Mae, what do you think? Is your shape a triangle?
Mae: No, it's not a triangle.
Teacher: How can you tell?
Mae: Because it has four sides and triangles have three sides.
Teacher: I heard you say that your shape is not a triangle because it has four sides and triangles have three sides. Is that right?

Mae: Yes.
Teacher: Class, do you agree with Mae?

Students (in unison): Yes.
Teacher: Mae, see if you can find a triangle and I'll come back to check what you found.

Open-ended questions, such as, "What do we know about triangles?" or, "How did you figure that out?" encourage them to respond in ways that allows them to think and speak like mathematicians. Teachers can use responses to facilitate an organic conversation, as in the excerpt above, that allows students to collaborate, provide feedback, and built on one another's reasoning.

Vignette: Alex Builds Numbers with a Partner (a two-day lesson)

Grade: 1

Content Connection: 2, Exploring Changing Quantities
Drivers of Investigation: 1, Make Sense of the World
Concepts: Meaning of number, patterns, addition
SMPs: SMP.2, 3
Classroom Narrative:
In first grade, Alex's class is building understanding of making numbers. The teacher, Ms. Kim, launches the lesson with a whole class conversation with all students gathered on the carpet by the front of the room; half of the students hold a small rack of beads. Ms. Kim held a large rekenrek—an arithmetic rack with two rows of 10 beads each— and moved two beads from the top rack to one side and three beads from the second rack. Ms. Kim asked students, "How many beads do you see on this side of the rack? Turn and talk to your partner about how many beads you see altogether and how you can tell." Students turned to their peers excitedly and shared their ideas.

"Who wants to share? How many beads do you see?" the teacher asks. Students raise their hands. Ms. Kim decided to ask Alex to share, who, in eagerness to respond, sometimes overlooks key details. Alex says, "I see five beads." Ms. Kim presses, "You see five beads. And how do you see it?" Alex continues, "Because there are two on the top and three on the bottom and that makes one, two, three, four, five." Ms. Kim revoices, "I heard you say that you see five beads because there are two on the top and three on the bottom and two and three make five altogether. Is that right? Who agrees with Alex?" Several hands go up in the air.
"Are there other ways to make a five?" Ms. Kim wonders. "Work with your partner. If you are holding the rekenrek, you are Partner A. Raise your hand if you are Partner A. If you are not holding a rekenrek, you are Partner B. Raise your hand if you are Partner B. Ok, Partner A - How else can you make a five? Use your rekenrek to show another way to make a five. Then it will be Partner B's turn. Partner B—make five in a different way."

Students turn to their partners and begin to move beads. Some students move five beads over on the top row and none on the bottom. Others show four on the top row and one on the bottom. Several others are unsure, moving beads around playfully on the rekenrek.

Ms. Kim moves around the carpet area, squatting down to meet with particular partner groups and listen to their conversations about making the number five. After a few minutes, the teacher reconvenes them for a discussion. While moving around the room
and listening to the conversations in small groups or pairs, Ms. Kim noticed that some of the English learners are having trouble expressing their ideas to each other. Ms. Kim helps model the language needed and has students practice with their partner while moving the beads on their rekenrek. Ms. Kim makes a mental note to review this discourse in tomorrow's designated ELD lesson.

The teacher opens with, "What were some other ways to make five?"
Students share ways to make five. Ms. Kim revoices their answers, checking with the class to see whether their different combinations of number count up to five and allowing students to revise their thinking when it does not.

Ms. Kim then introduces the activity they will be working for the rest of the lesson at their tables with their partners. Tables are provided number cards. Each partner will take turns turning over a number card and representing it on the rekenrek. The second partner is to ask, "How do you see it?" allowing the partner to explain. The roles are then changed. Partner B will represent the same number in a different way and Partner A will ask, "How do you see it?" Partners must agree that each combination does indeed count to the number on the card.

Alex moves to their table with his partner, who has been holding the rekenrek. As Alex does so, the teacher uses knowledge of Alex's fidgetiness during partner work. Ms. Kim reminds Alex to use the fidget spinner when it is partner A's turn to hold the rekenrek. Alex relies on this as Partner A quickly turns over a number card, and exclaims, "Eight!" "So now you have to make an eight," declares Alex. Partner A moves the beads around playfully, moving all 10 beads to the side and counting them one by one. Upon reaching eight, Partner A pauses and moves the remaining two beads away.
"Ok, I made eight. Now you say, 'How did I see it?'" Partner A states, chuckling.
"How do you see it?" asks Alex. Partner A answers, "there are five on the top and one, two, three on the bottom. Your turn."

Alex takes the rekenrek and moves one bead away from the top row and adds one bead from the second row. "I see four and four."

They continue to take turns with new numbers. Ms. Kim circulates around the room asking students to explain their representations and supporting partners' interactions with one another. As Ms. Kim records their representations and explanations while moving from group to group. The teacher uses this time as a formative assessment opportunity and makes plans for the next day's discussion about patterns in representing numbers.

Critical Areas of Instructional Focus for Transitional Kindergarten through Grade Two

The mathematics content across transitional kindergarten through grade twelve progresses in accordance with the CA CCSSM principles of focus, coherence, and rigor. The Big Ideas network maps on the following pages highlight important and foundational content, shown as nodes, for each grade level. As students explore and investigate with the Big Ideas, they will likely encounter many different content standards and note the connections between them. In the network maps, the size of a node relates to the number of connections it has with other Big Ideas. The connections between Big Ideas are made when the two connected big ideas contain one or more of the same standards.

The colors in the network nodes correspond to the colors used in the Content Connections, Big Ideas, and Standards tables, which indicate in more detail how grade level content standards can be addressed in the context of the CCs described in this Framework.

Figure 6.3: Transitional Kindergarten Big Ideas

1075

Link to long description

Figure 6.4. Transitional Kindergarten Content Connections, Big Ideas, and Standards

Content Connection	Big Idea	TK Standards
Communicating Stories with Data Exploring Changing Quantities	Measure and Order	AF1.1, M1.1, M1.2, M1.3, NS2.1, NS2.3, NS1.3, G 1.1, G2.1 NS1.4, NS1.5, MR1.1, NS1.1, NS1.2: Compare, order, count, and measure objects in the world. Learn to work out the number of objects by grouping and recognize up to 4 objects without counting.
Communicating Stories with Data Taking Wholes Apart, Putting Parts Together	Look for patterns	AF2.1, AF2.2: NS1.3, NS1.4, NS1.5, NS2.1, NS2.3, G1.1, M1.2: Recognize and duplicate patterns understand the core unit in a repeating pattern. Notice size differences in similar shapes.
Exploring Changing Quantities	Count to 10	NS1.4, MR1.1, AF1.1, NS2.2: Count up to 10 using one to one correspondence. Know that adding or taking away 1 makes the group larger or smaller by 1.
Taking Wholes Apart, Putting Parts Together	Create patterns	AF2.2, AF2.1, M1.2, G1.1, G1.2, G2.1: Create patterns - using claps, signs, blocks, shapes. Use similar shapes to make a pattern and identify size differences in the patterns.
Taking Wholes Apart, Putting Parts Together Discovering Shape and Space	See and use shapes	G1.1, G1.2, NS2.3, NS1.4, MR1.1: Combine different shapes to create a picture or design \& recognize individual shapes, identifying how many shapes there are.
Discovering Shape and Space	Make and measure shapes	G1.1, M1.1, M1.2, NS1.4: Create and measure different shapes. Identify size differences in similar shapes.
Discovering Shape and Space	Shapes in space	G2.1, M1.1, MR1.1: Visualize shapes and solids (2-D and 3-D) in different positions, including nesting shapes, and learn to describe direction, distance, and location in space.

Figure 6.4 includes Preschool Foundations in mathematics for students at around 60 months of age. The related kindergarten standards for transitional kindergarten are identified in the next section.

Figure 6.5: Kindergarten Big Ideas

Link to long description

Figure 6.6: Kindergarten Content Connections, Big Ideas, and Standards

Content Connection	Big Idea	K Standards
Communicating Stories with Data	 Describe Data	MD.1, MD.2, MD.3, CC.4, CC.5, G.4: Sort, count, classify, compare, and describe objects using numbers for length, weight, or other attributes.

Content Connection	Big Idea	K Standards
Exploring Changing Quantities	How Many?	CC.1, СС.2, CC.3, CC.4, CC.5, CC.6, CC.7, MD.3: Know number names and the count sequence to determine how many are in a group of objects arranged in a line, array, or circle. Fingers are important representations of numbers. Use words and drawings to make convincing arguments to justify work.
Exploring Changing Quantities	Bigger or Equal?	CC.4, CC.5, CC.6, MD.2, G.4: Identify a number of objects as greater than, less than, or equal to the number of objects in another group. Justify or prove your findings with number sentences and other representations.
Taking Wholes Apart, Putting Parts Together	Being Flexible within 10	OA.1, OA.2, OA.3, OA.4, OA.5, CC.6, G.6: Make 10, add and subtract within 10, compose and decompose within 10 (find 2 numbers to make 10). Fingers are important.
Taking Wholes Apart, Putting Parts Together	Place and position of numbers	CC.3, CC.5, NBT.1: Get to know numbers between 11 and 19 by name and expanded notation to become familiar with place value, for example: $14=10+4$.
Taking Wholes Apart, Putting Parts Together	Model with numbers	OA.1, OA.2, OA.5, NBT.1, MD.2: Add, subtract, and model abstract problems with fingers, other manipulatives, sounds, movement, words, and models.
Discovering Shape and Space	Shapes in the World	G.1, G.2, G.3, G.4, G.5, G.6, MD.1, MD.2, MD.3: Describe the physical world using shapes. Create 2-D and 3-D shapes, and analyze and compare them.
Discovering Shape and Space	Making shapes from parts	MD.1, MD.2, G.4, G.5, G.6: Compose larger shapes by combining known shapes. Explore similarities and differences of shapes using numbers and measurements.

Figure 6.7: Grade 1 Big Ideas

Link to long description

Figure 6.8. Grade 1 Content Connections, Big Ideas, and Standards

Content Connection	Big Idea	Grade 1 Standards
Communicating Stories with Data	Make Sense of Data	MD.2, MD.4, MD.3, MD.1, NBT.1, OA.1, OA.2, OA.3: Organize, order, represent, and interpret data with two or more categories; ask and answer questions about the total number of data points, how many are in each category, and how many more or less are in one category than in another.

Content Connection	Big Idea	Grade 1 Standards
Communicating Stories with Data Exploring Changing Quantities	Measuring with Objects	MD. 1 MD.2, OA.5: Express the length of an object by units of measurement e.g., the stapler is 5 red Cuisenaire rods long, the red rod representing the unit of measure. Understand that the measurement length of an object is the number of units used to measure.
Exploring Changing Quantities	Clocks \& Time	MD.3, NBT.2, G.3: Read and express time on digital and analog clocks using units of an hour or half hour.
Exploring Changing Quantities	Equal Expressions	OA.6, OA.7, OA.2, OA.1, OA.8, OA.5, OA.4, OA.3, NBT.4: Understand addition and subtraction, using various models, such as connected cubes. Compose and decompose numbers to make equal expressions, knowing that equals means that both sides of an expression are the same (and it is not simply the result of an operation).
Exploring Changing Quantities	Reasoning about Equality	OA.3, OA.6, OA.7, NBT.2, NBT.3, NBT.4: Justify reasoning about equal amounts, using flexible number strategies (e.g., students use compensation strategies to justify number sentences, such as 23-7=24-8).
Taking Wholes Apart, Putting Parts Together	Tens \& Ones	NBT.4, NBT.3, NBT.1, NBT.2, NBT.6, NBT.5: Think of whole numbers between 10 and 100 in terms of tens and ones. Through activities that build number sense, students understand the order of the counting numbers and their relative magnitudes.
Discovering Shape and Space	Equal Parts inside Shapes	G.3, G.2, G.1, MD.3: Compose 2D shapes on a plane as well as in 3D space to create cubes, prisms, cylinders, and cones. Shapes can also be decomposed into equal shares, as in a circle broken into halves and quarters defines a clock face.

Figure 6.9: Grade 2 Big Ideas

1091
1092
1093 Figure 6.10. Grade 2 Content Connections, Big Ideas, and Standards

Content Connection	Big Idea	Standards
Communicating Stories with Data	 Compare Objects	MD.1, MD.2, MD.3, MD.4, MD.6, MD.9: Determine the length of objects using standard units of measures, and use appropriate tools to classify objects, interpreting and comparing linear measures on a number line.

Content Connection	Big Idea	Standards
$\begin{array}{l}\text { Communicating } \\ \text { Stories with Data }\end{array}$	$\begin{array}{l}\text { Represent } \\ \text { Data }\end{array}$	$\begin{array}{l}\text { MD.7, MD.9, MD.10, G.2, G.3, NBT.2: } \\ \text { Represent data by using line plots, picture } \\ \text { graphs, and bar graphs, and interpret data in } \\ \text { different data representations, including clock } \\ \text { faces to the nearest 5 minutes. }\end{array}$
$\begin{array}{l}\text { Exploring } \\ \text { Changing } \\ \text { Quantities }\end{array}$	$\begin{array}{l}\text { Dollars \& } \\ \text { Cents }\end{array}$	$\begin{array}{l}\text { MD.8, MD.5, NBT.1, NBT.2, NBT.5, NBT.6, } \\ \text { NBT.7: Understand the unit values of money and } \\ \text { compute different values when combining dollars } \\ \text { and cents. }\end{array}$
$\begin{array}{l}\text { Exploring } \\ \text { Changing } \\ \text { Quantities } \\ \text { \& }\end{array}$	$\begin{array}{l}\text { Problem } \\ \text { Solving with } \\ \text { Measure }\end{array}$	$\begin{array}{l}\text { NBT.7, NBT.1, MD.1, MD.2, MD.3, MD.4, MD.5, } \\ \text { MD.6, MD.9, OA.1: Solve problems involving }\end{array}$
length measures using addition and subtraction.		

Mathematics: Investigating and Connecting, Grades Three through Five

Mathematics in grades three, four, and five rely on a student's acquisition of a solid understanding of the concepts developed in the earlier grades. New challenges in mathematics are exciting and meaningful for students when they are able to connect previous learning to make sense of current grade level concepts. The goal of the CA CCSSM at every grade is for students to understand mathematics. This means far more than expecting students to master procedures and memorize facts, and may call for adjustments to the ways mathematics instruction is structured in the classroom. To understand mathematics, students must be the doers of mathematics-the ones who do the thinking, do the explaining, and do the justifying. In this paradigm, teachers engage all students in authentic, relevant mathematics experiences; they support learning by recognizing, respecting, and nurturing their students' ability to develop deep mathematical understanding (Hansen and Mathern, 2008). As they plan for instruction, teachers are also doers of mathematics. Teachers work through the tasks themselves in order to anticipate the approaches students may take, partial understandings students may have, and challenges students may encounter in their explorations. 5 Practices for Orchestrating Productive Mathematical Discussions (Smith and Stein, 2011) offers a structure for planning and implementing mathematical tasks and orchestrating the discourse that emerges in the class. Additional discussion of these shifts in the teacher's role can be found in Chapter 2.

What constitutes whether students are demonstrating understanding? A student can express an idea in their own words, build a concrete model, illustrate their thinking pictorially, or provide examples and possibly counterexamples. One might observe them making connections between ideas or applying a strategy appropriately in another related situation (Davis, 2006). Many useful indicators of deeper understanding are embedded in the SMPs. Teachers can note when students "analyze...the relationships in a problem so that they can understand the situation and identify possible ways to solve it," as described in SMP.1. Other examples of observable behaviors specified in the SMPs include students' abilities to

- use mathematical reasoning to justify their ideas;
- draw diagrams of important features and relationships;
- select tools that are appropriate for solving the particular problem at hand; and
- accurately identify the symbols, units, and operations they use in solving problems (SMP.3, 4, 5, 6).

To teach mathematics for understanding, it is essential to actively and intentionally cultivate students' use of the SMPs. The introduction to the CA CCSSM is explicit on this point: "The MP standards must be taught as carefully and practiced as intentionally as the Standards for Mathematical Content. Neither should be isolated from the other; effective mathematics instruction occurs when the two halves of the CA CCSSM come together as a powerful whole" (CA CCSSM, 3). The SMPs are designed to support students' development across the school years. Students in primary grades make sense of and persevere to solve problems (SMP.1); as high school students investigate their grade level mathematics, they, too, make sense of problems and persevere in solving them. Further discussion of the continuum of SMPs is detailed in Chapter 4.

Abstract

What is a Model?

Modeling, as used in the CACCSSM, is primarily about using mathematics to describe the world. In elementary mathematics, a model might be a representation such as a math drawing or a situation equation (operations and algebraic thinking), line plot, picture graph, or bar graph (measurement), or building made of blocks (geometry). In grades six through seven, a model could be a table or plotted line (ratio and proportional reasoning) or box plot, scatter plot, or histogram (statistics and probability). In grade eight, students begin to use functions to model relationships between quantities. In high school, modeling becomes more complex, building on what students have learned in kindergarten through grade eight. Representations such as tables or scatter plots are often intermediate steps rather than the models themselves. The same representations and concrete objects used as models of real life situations are used to understand mathematical or statistical concepts. The use of representations and

1155
1156
1157
1158
1159

> physical objects to understand mathematics is sometimes referred to as "modeling mathematics," and the associated representations and objects are sometimes called "models."
> Taken from the K-12 Modeling Progression for the Common Core Math Standards The University of Arizona, n.d.

SMPs are linguistically demanding, yet they provide opportunities to develop language, specifically the language of the discipline of mathematics; educators must remain aware of and provide support for students who may grasp a concept, yet struggle to express their understanding. For English learners as well as any students with learning differences, small group instruction should build the language needed for the demand of the mathematical concepts and standards in anticipation of the linguistic proficiency expectations of the lesson. Chapter 4, Exploring, Discovering, and Reasoning With and About Mathematics, closely examines the critical importance of the SMPs and provides additional guidance on supporting students on their path to becoming proficient practitioners of mathematics.

Students who regularly incorporate the SMPs in their mathematical work develop mental habits that enable them to approach novel problems as well as routine procedural exercises, and to solve them with confidence, understanding, and accuracy. Specifically, recent research shows that an instructional approach focused on mathematical practices may be important in supporting student achievement on curricular standards and assessments, and that it also contributes to students' positive affect and interest in mathematics (Sengupta-Irving and Enyedy, 2014). Regularly incorporating the SMPs gives students opportunities to make sense of the specific linguistic features of the genres of mathematics, and produce, reflect on, and revise their own mathematical communications. SMPs also offer teachers opportunities to engage in formative assessment, provide real-time feedback, and inform potential student language use issues that may arise as they develop their mathematical thinking.

The content standards were built on progressions of topics across grade levels, informed by both research on children's cognitive development and by the logical structure of mathematics. Transitional kindergarten through grade two classes help
students build a foundation for all their future mathematics as they explore numbers, operations, measurement and shapes. Students learned place value and used methods based on place value to add and subtract within 1,000 . They developed efficient, reliable methods for addition and subtraction within 100. Students continue developing efficient methods throughout grade three, and learn the standard algorithms for addition and subtraction in grade four (4.NBT.B.4).

> Standard algorithm is defined in this framework as a step-by-step approach to calculating, decided by societal convention, developed for efficiency. Flexible and fluent use of standard algorithms requires conceptual understanding. See CC3: Taking Wholes Apart and Putting Parts Together - Whole Numbers, for more on standard algorithms.

In the earlier grades, students worked with equal groups and the array model, preparing the way for understanding multiplication. They used standard units to measure lengths and described attributes of geometric shapes. Mathematical investigations of core content-that is, the grade-level big ideas in mathematics-can be productively approached through the SMPs.

The mathematics content of grades three, four, and five is conceptually rich and multifaceted. Students who engaged in meaningful mathematics in transitional kindergarten through grade two are more likely to increase their mathematical understanding as they advance through subsequent grades. Across grades three, four, and five, they will expand this early mathematical foundation as they build understanding of the operations of multiplication and division, concepts and operations with fractions, and measurement of area and volume.

Students may arrive in grades three, four, and five with unfinished learning from previous grades. When this occurs, it is important that teachers provide support without making premature determinations that students are low achievers, require interventions, or need to be placed in a group learning different grade-level standards. Students develop at different times and at different rates; what educators perceive as an apparent lack of understanding may not indicate a real lack of understanding. Mathematics
routines that are designed to encourage students to use language and discuss their mathematics work support all learners across the grades. Achieve the Core (2018) lists a variety of Mathematical Language and Instructional Routines that are of benefit to all students, particularly those who are learning English or who are challenged by the demands of academic language for mathematics. One example is the "Collect and Display" routine in which the teacher listens for and notes the language students use as they engage in mathematics, whether with a partner, small group or whole class. The students' language is then collected and displayed, serving as a collective record a reference as students continue to develop their mathematical language. Instructional routines such as "Contemplate Then Calculate" and "Connecting Representations" help students apply the SMPs and deepen their involvement in the study of mathematics. By utilizing well-chosen routines and practices, educators help students strengthen understandings that may have been weak or incomplete in their previous learning.

Preparing students to be the reflective problem solvers envisioned in the CA CCSSM requires educators to cultivate all students' abilities to persevere through challenges, explain the strategies they apply, and justify their conclusions. Research shows that students achieve at higher levels when they are actively engaged in the learning process (Boaler, 2016; CAST, 2020). Educators can increase student engagement by selecting challenging mathematics problems that invite all learners-including students who are linguistically and/or culturally diverse, and those with learning differences-to engage and succeed. Such problems are those that:

- involve multiple content areas;
- highlight contributions of diverse cultural groups;
- invite curiosity;
- allow for multiple approaches, collaboration, and representations in multiple languages; and
- carry the expectation that students will use mathematical reasoning.

As teachers come to know their students, families, and communities well, they can increase the cultural relevance of mathematics instruction by connecting classroom mathematics to features of the community (TODOS, 2014, Ferlazzo, 2020). A photo of prices posted at a local store, for example, could initiate a mathematics lesson. If students' cultures have strong associations with music, dance or other forms of artistic expression, mathematics instruction can incorporate these elements. Readers will find guidance on supporting the academic growth of students with learning differences and linguistically and culturally diverse students in the Introduction to this Framework, Chapter 1. See also Chapter 2, Teaching for Equity and Engagement, which discusses in detail the value of teaching with open tasks as a means of engaging all learners at levels of challenge appropriate to them.

Driving Investigation and Making Connections, Grades Three through Five

Chapters 6, 7, and 8 of this framework emphasize students' active engagement in the learning process. Instruction is organized and designed in the spirit of investigating the "Big Ideas" of mathematics and connecting content and mathematical practices within and across grade levels. An idea becomes big when it includes connected mathematical content and a driver for investigation-it is the combination of content and investigation that makes content meaningful and important.

Instruction as described in this framework intentionally draws conceptual connections within and across mathematical domains.

The four Content Connections (CC) described in the framework organize content and provide mathematical coherence through the grades:

- (CC1) Communicating Stories with Data
- (CC2) Exploring Changing Quantities
- (CC3) Taking Wholes Apart, Putting Parts Together
- (CC4) Discovering Shape and Space

The four CCs should be recognized as being of equal importance; they are not meant to be addressed sequentially. As captured in Figure 6.1, Content Connections, Mathematical Practices and Drivers of Investigation, there is considerable crossover among the standards and the content connections. A specific standard, for example, 4.NF.A.2, may be addressed during an investigation in which students communicate stories with data (CC1), and the same standard might also be developed while engaging in lessons in which students take wholes apart and/or put parts together (CC3).

These content connections should be developed through investigation of questions in authentic contexts. Students actively engage in learning when they find purpose and meaning in the learning. Mathematical investigations will naturally fall into one or more of these Drivers of Investigation (DI):

- DI 1: Making Sense of the World (Understand and Explain)
- DI 2: Predicting What Could Happen (Predict)
- DI 3: Impacting the Future (Affect)

Big Ideas that drive the design of instructional activities will link one or more content connections with a driver of investigation, such as communicating stories with data (CC1) to predict what could happen (DI2), or exploring changing quantities (CC2) to impact the future (DI3). Instruction should primarily involve tasks that invite students to make sense of these Big Ideas, elicit wondering in authentic contexts, and necessitate mathematics. Big Ideas in math are central to the learning of mathematics, link numerous mathematical understandings into a coherent whole, and provide focal points for students' investigations. Figure 6.13, Progression Chart of Big Ideas through Grades $3-5$, identifies some of the Big Ideas in grade levels three through five, and indicates the Content Connections with which they are readily associated. Later in this chapter, find a table of Content Connections, Big Ideas, and Standards specific to each grade level three through five, as well as a network diagram of the Big Ideas for the grade.

Chapter 2 introduces the purpose and benefits of teaching around Big Ideas as one of the five main components of teaching for equity and engagement. Teachers of
transitional kindergarten through grade five will find much of value in Chapter 2, including the vignette, Productive Partnerships, in which grade four students engage in and strengthen their capacity for several mathematical practices as they are challenged by an open task of creating equations using four 4's.

An authentic activity or problem is one in which students investigate or struggle with situations or questions about which they actually wonder. Lesson design should be built to elicit that wondering. For example, environmental observations and issues on campus and in the local community provide rich contexts for student investigations and mathematical analysis as they concurrently help students develop their understanding of California's Environmental Principles and Concepts. An activity or task can be considered authentic if attempting to understand the situation or task creates for students a need to learn or use the mathematical idea or strategy. The content involved in the course of a single investigation cuts across several CA CCSSM domains, perhaps Measurement and Data, Number and Operations in Base Ten (NBT), and Operations and Algebraic Thinking (OA). Simultaneously, students employ several of the Mathematical Practices as they conduct their investigations. Chapter 4 illustrates how Content Connections, Drivers of Investigations, and three SMPs come together across the grade bands. Figure 6.12 illustrates the connections among the features of such an investigative, connected approach.

Figure 6.11: Content Connections, Mathematical Practices and Drivers of Investigation

Link to long description

The Progression Chart of Big Ideas through Grades 3-5 (below) links the big ideas for each grade with relevant Content Connections. Specific SMPs, content standards, and activities are highlighted in the discussion of each Content Connection.

Figure 6.12: Progression Chart of Big Ideas through Grades 3-5

Content Connections	Big Ideas: Grade 3	Big Ideas: Grade 4	Big Ideas: Grade 5
Communicating Stories with Data	Represent Multivariable data	Measuring and plotting	Plotting patterns
Communicating Stories with Data	Fractions of shape and time	Rectangle Investigations	Telling a data story

Content Connections	Big ldeas: Grade 3	Big Ideas: Grade 4	Big Ideas: Grade 5			
Communicating Stories with Data	Measuring	n/a	n/a			
Exploring Changing Quantities	Addition and subtraction patterns	Number and shape Exploring Changing Quantities	Number flexibility to 100			
Factors \& area models	Felling a data story					
Exploring Changing Quantities	n/a	Multi-digit numbers	Modeling			
Exploring Changing Quantities	n/a	n/a				
Exploring Changing Quantities	n/a	n/a	Fraction			
connections				$	$	Shapes on a plane
:---						
Taking Wholes Apart, Putting Parts						
Square tiles						
Together						

Content Connections, Grades Three Through Five

CC1: Communicating stories with data

In the upper elementary grades, students acquire important foundational concepts involving measurement, and increase the degree of precision to which they measure quantities as they engage in solving interesting, relevant problems. They measure various attributes including: time, length, weight, area, perimeter, and volume of liquids
and solid figures (3.MD.1-4; 4.MD.1-4; 5.MD.1-5). Third-grade students develop an understanding of area, focusing on square units in rectangular configurations, and they build concepts of liquid volume and mass. As fourth-grade students solve problems in measurement, they discover and apply a formula to calculate areas of rectangles. They solve measurement problems involving time, money, distance, volume and mass. In fifth grade, students apply all of these skills as they focus on concepts of volume and use multiplicative thinking to calculate volumes of right rectangular prisms.

Measurement problem contexts are well-suited to connect with data science concepts. Students can gather and analyze measurement data to answer relevant questions. Chapter 5 offers guidance as to how to integrate these content areas. Students apply reasoning and their growing understanding of multiplication and fractions to gather, represent, and interpret data in culturally meaningful contexts (SMP.1, 4, 7). While mathematical skills are necessarily in play when working with data, the emphasis is on representation and analysis; students need to be statistically literate in order to interpret the world (Van de Walle et al., 2014, 378).

Students create and examine stories told by measurement and data as they

- solve problems involving measurement (3.MD.A.1, 2; 4.MD.A. 1 - 3; 5.MD. 1 - 5); and
- represent and interpret data (3.MD.B.3, 4; 4.MD.b.4; 5.MD.B.2).

In their work with measurement and data, students use the SMPs to

- make sense of data and interpret results of investigations (SMP.1, 3, 6);
- construct arguments based on context as they reason about data (SMP.2, 3); and
- select appropriate tools to model their mathematical thinking ((SMP.4, 5, 6).

Key to creating lessons that promote student discourse, curiosity and active learning is the nature of the question being investigated. When the class determines what information to gather, they are likely to be fully engaged in the process. Students are naturally interested in themselves and their peers, and are curious about the world around them. Science, history-social science, and California's Environmental Principles
and Concepts (EP\&Cs) are prime for integrating in mathematics, as they connect to local contexts that are relevant to students and their communities. These local contexts offer a wide array of opportunities for collection and analysis of real-world data and engage students in investigations about local environmental phenomena that can directly support math instruction and the objectives of the standards and frameworks for these other disciplines. Referencing phenomena in their local communities, their lives, and experiences is an access point for linguistically and culturally diverse English learners. This approach supports concept development more effectively than examples that have minimal meaning to the learners, and can increase the difficulty of the exploration.

The internet provides access to almost unlimited sources of current data of interest to students. Some possible "about us" investigations might include the following:

- Minutes spent traveling to school each day
- Minutes of screen time in the past week
- Numbers of pets in the family

Other investigations may center on questions such as:

- What are typical temperatures in our area over the course of a year?
- What traffic patterns can we observe on nearby street(s)?
- What is the most common car color where we live? (Data Tells Us about Ourselves)
- How far do players run during various professional sports games (soccer, basketball, baseball, etc.)?
- How far do people have to travel to the nearest hospital in different counties of the state?
- How long does it take for various seeds to germinate? (Van de Walle et al., 2014)

As students make decisions about how to gather the data, teacher guidance will likely be necessary. The question under investigation must be clearly defined and stated so that all data gatherers will be consistent as they collect and record responses. "Data Clusters and Distributions," a lesson for upper elementary grades (PBS Learning Media, 2008), focuses on the importance of consistency in data collection. The video portion of the lesson demonstrates how inconsistent data gathering led to incorrect findings; the characters in the video then collaborate to remedy the problem and begin to analyze the data. The lesson poses additional questions highlighting the value of interpreting the results of a study in order to gain knowledge and make decisions or recommendations.

Investigations of data allow for integration and purposeful practice of the four operations and fractions concepts, both of which are major content areas in these grades. Third grade students use multiplication when they draw picture graphs in which each picture represents more than one object, or draw bar graphs in which the height of a given bar in tick marks must be multiplied by the scale factor to yield the number of objects in the given category. Fourth- and fifth-grade students convert measures within a given measurement system and use fractional values as they create and analyze line plots of data sets.

Snapshot: Habitat and Human Activity

In this example (Lieberman and Brown, 2020), the teacher works with students to deepen their knowledge and skills of mathematics, science, English language arts/literacy (ELA), and the California EP\&Cs through an investigation of habitats on campus. They will investigate how human activities can affect the number and diversity of organisms that live on campus.

The mathematics-related focus of the learning will have students conduct an investigation that is local-ensuring it is relevant and meaningful to their lives. The teacher has decided to focus on content related to measurement and data by having students: generate measurement data using rulers (CC 1, 4, DI 3; 3.MD.B.4); represent data by drawing a scaled picture graph and a scaled bar graph (3.MD.B.3); recognize area as an attribute of plane figures and understand the concept of area measurement
(3.MD.C.5); and, solve real-world and mathematical problems involving perimeters of polygons (3.MD.D.8).

From a science perspective, students' investigations will focus on: gathering (CA NGSS SEP-3) and analyzing evidence (CA NGSS SEP-4); constructing an argument (CA NGSS SEP-7); and making a claim about the merit of a solution to a problem (CA NGSS 3-LS4-4).

In alignment with EP\&C II, students will analyze the results of their investigation to examine how "the long-term functioning and health of terrestrial, freshwater, coastal and marine ecosystems are influenced by their relationships with human societies" (CA EP\&C II); and, how "decisions affecting resources and natural systems are based on a wide range of considerations and decision-making processes (CA EP\&C V).

Based on their investigations, mathematical analysis, and consideration of the environmental principles, students will choose to write either opinion pieces on topics or texts, supporting a point of view with reasons (ELA W.3.1), or informative/explanatory texts to examine a topic and convey ideas and information clearly (ELA W.3.2). In the course of this rich activity, English language development standards will be called into play: P1.C, 9 - 12; P2.A, 1, 2; P2.B, 3-5; P2.C, 6-7. In particular, the following ELD Standards are applicable to this snapshot:

Part I: Interacting in Meaningful Ways
A. Collaborative (engagement in dialogue with others)

1. Exchanging information and ideas via oral communication and conversations
2. Interacting via written English (print and multimedia)
3. Offering opinions and negotiating with or persuading others
4. Adapting language choices to various contexts
B. Interpretive (comprehension and analysis of written and spoken texts)
5. Listening actively and asking or answering questions about what was heard
6. Reading closely and explaining interpretations and ideas from reading
7. Evaluating how well writers and speakers use language to present or support ideas
8. Analyzing how writers use vocabulary and other language resources
C. Productive (creation of oral presentations and written texts)
9. Expressing information and ideas in oral presentations
10. Writing literary and informational texts
11. Supporting opinions or justifying arguments and evaluating others' opinions or arguments
12. Selecting and applying varied and precise vocabulary and other language resources)

Part 2 A. Structuring Cohesive Texts

1. Understanding text structure and organization based on purpose, text type, and discipline
2. Understanding cohesion and how language resources across a text contribute to the way a text unfolds and flows

Part 2 B. Expanding and Enriching Ideas

3. Using verbs and verb phrases to create precision and clarity in different text types
4. Using nouns and noun phrases to expand ideas and provide more detail
5. Modifying to add details to provide more information and create precision

Part 2 C. Connecting and Condensing Ideas

6. Connecting ideas within sentences by combining clauses
7. Condensing ideas within sentences using a variety of language resources

During an initial exploration of campus, students looked for places to observe plants and animals. They identified these areas on a simple map of the campus and recorded a few examples of what they observed.

Back in the classroom, students shared what they observed. The teacher introduced the concept of habitat and explained that a healthy habitat provides the resources and conditions necessary for a diversity of organisms (plants and animals) to survive. The teacher also led a discussion about how human activity can affect the number and types of organisms that will survive in an area.

The teacher and students decided to work together to design an investigation to identify and gather data from both areas with different levels of human activity. They decided to compare areas: with more and fewer plants and animals; and, areas with more or less human activity. Prior to starting their outdoor investigation, the teacher introduced the relevant math standards and practices that they would use to analyze the data collected during the investigation. Students laid out and measured their rectangular study plots using yardsticks, recorded the numbers and types of plants and animals in the plots in a table; and determined the types and levels of human activities taking place near each plot (by identifying the different types of activities and how many students and adults were involved in each type).

After collecting data, the class discussed the concept of area measurement. Students then recorded and analyzed their findings including the area of the different types of study plots and the nearby human activities. The students calculated the area of the rectangular study plots. They then used the data from their tables to create scaled bar graphs and/or scaled picture graphs of the number of animals and plants in the study plots. The teacher presented students with a real-world problem involving comparing the numbers of plants and animals in their study plots. The students used the graphs to make statements about the data (e.g., "There are x number of plants/animals in this study plot." "There are more plants than animals in this plot." "There are twice as many animals as plants in this plot."). Students presented results using scaled bar and picture graphs.

The teacher posed the question, "How do human activities affect the number and diversity (types) of organisms that live on campus?" Students were asked to construct an argument based on the analysis of their data about the effects of human activities on habitats and the organisms that live there. Working in teams, they designed a solution that might minimize the effects of human activities on organisms that live on campus. Using the results of their investigations, data collected and analyzed, and graphs, students wrote informative/explanatory texts that examined the topic of changes to habitats and conveyed their ideas about the problems and made claims about the merits of their solutions.

As they concluded their investigations, students began to wonder by whom and how the decisions had been made about the design and use of the campus. One student, a new arrival to the school, also mentioned that there were many more plants and animals at their previous school. This comment initiated another major question and discussion about why some schools have lots of green space, trees, and gardens, and others have few or none. This conversation created a direct connection to the teacher's upcoming history-social science unit where the focus will be on the distribution and use of resources and environmental justice.

The following week, the class began a unit on three important topics: the ways in which people have used the resources of the local region and modified the physical environment (HSS 3.1.2.); the importance of public virtue and the role of citizens, including how to participate in a classroom, in the community, and in civic life (HSS 3.4.2.); and, understanding that individual economic choices involve trade-offs and the evaluation of benefits and costs (HSS 3.5.3).

To understand the stories told by measurement and data, students are required to expand beyond collecting and presenting data; they must be actively engaged in analyzing and interpreting data as well.

One approach, called "turning the task around," allows students to study a mystery graph that illustrates some unknown topic. For example, given the unlabeled line plot here, students can describe what they notice about the values shown, and make suggestions as to what this graph could reasonably represent.

Some possibilities might include:

- The lengths in inches of various insects
- The widths in inches of people's fingers
- What fraction of a pizza different people ate
- What distance in miles students ran during physical education class
- Weights in grams of rocks in the class collection

In the PBS task "What's Typical, Based on the Shape of Data Charts?" students analyze two sets of data (collected by two different students) showing the heights of all the members of the school band. Both students measured the heights of the same 21 band members, yet the numbers reported are not identical in the two data sets (PBS Learning Media, n.d.). Preliminary tasks invite students to find the range of the data (4.MD.B.4) and the mode (a middle-school topic) for each set. Students then consider and offer explanations as to why the two data sets might differ, and make recommendations to the band director as to how many each of sizes small, medium, and large band uniforms they should order.
"Button Diameters," from Illustrative Mathematics (Illustrative Mathematics, 2016b) emphasizes measurement skills: students measure buttons to the nearest fourth and eighth inch. After creating line plots of the data, students describe the differences between the two line plots they created, consider which line plot gives more information, and which is easier to read.

Chapter 3 is devoted specifically to data science; it describes the vital role data science plays in the modern world and enumerates important principles in the learning of data science in kindergarten through grade twelve.

CC2: Exploring changing quantities

Upper elementary grade students extend their understanding of operations to include multiplication and division. They study several ways of thinking about these operations,
represent their thinking with tools, pictures, and numbers, and make connections among the various representations. Full understanding of the meanings of multiplication and division is essential, as students will need to apply the same thinking strategies when they begin operations with fractions. The development of solid understanding of these operations also prepares students for mathematics in middle school and beyond.

In grades three through five, students advance their algebraic thinking as they

- understand properties of multiplication and the relationship between multiplication and division (3.OA.1, 2, 5, 6; 4.OA.2, 5, 6; 5.NF.3, 4, 7);
- use the four operations to solve problems with whole numbers (3.OA.7.8; 4.NBT.4, 5; 5.NBT.5, 6); and
- use letters to stand for unknowns in equations (3.OA.3, 8; 4.2, 3).

Simultaneously, they expand their use of all the SMPs. For example, they

- think quantitatively and abstractly using multiplication and division;
- model contextually based problems using a variety of representations;
- communicate thinking using precise vocabulary and terms; and
- use patterns they discover as they develop meaningful, reliable and efficient methods to multiply and divide (SMP.2, 4, 6, 8) numbers within 100.

Meanings of Multiplication and Division

In previous grades, students worked with the operations of addition and subtraction; now they develop understanding of the meanings of multiplication and division of whole numbers. They recognize how multiplication is related to addition (it can sometimes call for repeatedly adding equal-sized groups), how it is distinct from addition, and how it serves as a more efficient way of counting quantities.

Students engage initially in multiplication activities and problems involving equal-sized groups, arrays, and area models (NGA/CCSSO, 2010c). Later (in grade four) they also
solve comparison problems and use the terms factor, multiple, and product. Students who hear teachers consistently and intentionally using precise mathematics terms during instruction become accustomed to the vocabulary. Over time, as they gain experience and as their confidence increases, students begin to incorporate the language themselves.

The most common types of multiplication and division word problems for grades three, four, and five (from the 2013 Mathematics Framework, Glossary) are summarized in the table below. As you read through the various problem situations, consider how the language associated with each type of problem might be confusing for a student who is learning English, and how teachers can support their students in acquiring precise mathematical language as they investigate mathematical content.

Common Multiplication and Division Situations	Unknown Product	Group Size Unknown	Number of Groups Unknown
n/a	= \square	$\square=$ and $\div=\square$	$\square=$ and $\div=\square$
Equal Groups	There are 3 bags with 6 plums in each bag. How many plums are there altogether? Measurement example You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	If 18 plums are shared equally and packed inside 3 bags, then how many plums will be in each bag? Measurement example You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	If 18 plums are to be packed, with 6 plums to a bag, then how many bags are needed? Measurement example You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays ${ }^{\dagger}$, Area ${ }^{\ddagger}$	There are 3 rows of apples with 6 apples in each row. How many apples are there? Area example What is the area of a rectangle that measures 3 centimeters by 6 centimeters?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row? Area example A rectangle has an area of 18 square centimeters. If one side is 3 centimeters long, how long is a side next to it?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be? Area example A rectangle has an area of 18 square centimeters. If one side is 6 centimeters long, how long is a side next to it?
Compare	A blue hat costs \$6. A red hat costs 3 times as much as the blue hat. How much does the red hat cost? Measurement example A rubber band is 6 centimeters long. How long will the rubber band be when it is stretched to be 3 times as long?	A red hat costs \$18, and that is three times as much as a blue hat costs. How much does a blue hat cost? Measurement example A rubber band is stretched to be 18 centimeters long and that is three times as long as it was at first. How long was the rubber band at first?	A red hat costs \$18 and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat? Measurement example A rubber band was 6 centimeters long at first. Now it is stretched to be 18 centimeters long. How many times as long is the rubber band now as it was at first?
General	= \square	$\square=$ and $\div=\square$	$\square x b=p$ and $p \div b=\square$

*The first examples in each cell focus on discrete things. These examples are easier for students and should be given before the measurement examples.
\dagger The language in the array examples shows the easiest form of array problems. A more difficult form of these problems uses the terms rows and columns, as in this example: "The apples in the grocery window are in 3 rows and 6 columns. How many apples are there?" Both forms are valuable.
\ddagger Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps; thus array problems include these especially important measurement situations

Views and Interpretations of the Operation of Multiplication

When students focus on the equal-groups interpretation of multiplication, they find the total number of objects in a particular number of equal-sized groups (3.OA.1). This references their understanding of addition, but it is important that instructional approaches include repeated addition as one of several distinct and necessary interpretations of multiplication. As they continue, students will use multiplication to solve contextually relevant problems involving arrays, area, and comparison using a variety of representations to show their thinking (SMP.4, 5, 6, 3.OA.3; 4.OA.2, 4.NBT.5).

Moving beyond the equal groups interpretation of multiplication can prove challenging for students. Arrays can serve as a likely next step, as they can be seen as the familiar equal-sized groups, but now the objects are arranged into orderly rows. This example shows, in each case, that when there are two groups of three cubes, there are six cubes, and $2 \times 3=6$.

Two Equal-sized Groups of three cubes

Array: Two rows (of equal size), with three cubes in each row

The instructional goal should be to move students beyond counting and re-counting items singly to determine the total; instead, they recognize the groups or rows as the quantities that comprise the total. In the example above, as students find the product, six, they should be counting by threes (three in each row) rather than counting single cubes.

To solve a problem such as, "How many seats are in our multi-purpose room? There are 20 rows of seats and each row has 16 seats," students can think about and represent the problem with an array. Some students may use the distributive property to simplify the problem, perhaps realizing that $10+10=20$, multiplying $10 \times 16=160$ and adding $160+160=320$. Others might take the 16 apart, thinking $16=10+8$. They can then apply the distributive property: $10 \times 20+6 \times 20=200+120=320$.

Students begin to view multiplication as area by building rectangles using sets of square tiles, which allows them to connect the now familiar array models with the newer idea of the area of a rectangle. Once students learn various ways to solve contextual story problems through creating, representing, and interpreting arrays, introducing the area interpretation of multiplication makes sense.

In grade three, students develop an understanding of area and perimeter by using visual models. Fourth graders extend their work with area and use formulas to calculate area and perimeter of rectangles. Students in grade five will continue to apply the equal-
sized groups and area models, and will begin to use the standard algorithm to multiply whole numbers (5.NBT.B.5). Fifth graders use their understanding of whole number multiplication, along with concrete materials and visual models, to multiply fractions (4.NBT.B.5; 5.NBT.B.6, 5.NF.B.6). The interpretation of multiplication as area connects the first category of investigation Exploring Changing Quantities with the third category, Stories told by Measurement and Data. Further discussion and illustration of these topics are found below, and in the vignette, "Alex Builds Rectangles to Find Area."

Third grade students use square tiles to build rectangles and find the area can be found by multiplying the side lengths (3.MD.7)

In grade four, students apply the area and perimeter formulas for rectangles to solve problems (4.MD.3)
"What is the width of a swimming pool that has a length of 12 units and an area of 60 square units?"

Grade five students find the areas of rectangles with fractional side lengths (5.NF.2.4b).

Beginning in fourth grade, students solve comparison problems in multiplication and division (4.OA.A.1). Comparison multiplication requires students to engage in thinking about some number of "times as many." Expressing multiplicative relationships can necessitate the use of complex sentence structures, a challenge for all students, and
perhaps especially for those who are English learners. Teachers support students by teaching and modeling the language of mathematics as well as giving students opportunities to practice that language.

In Chapter 3, find the grade four multiplication vignette in which students struggle for understanding as they encounter multiplication as comparison. The vignette also addresses the teachers' analysis of the experience and decisions regarding plans for the next lesson.

Comparison multiplication is particularly important in setting a foundation for scaling reasoning (5.NF.B.5) in grade five and demands careful introduction. The fifth-grade study of multiplication as scaling likewise sets the foundation for identifying scale factors and making scale copies in seventh grade and subsequent work with dilations and similarity (7.RP.1, 2, 3; 7.G.A.1). Presenting problems in familiar, culturally relevant contexts can help students to develop understanding and come to distinguish when multiplicative reasoning rather than additive reasoning is called for. They can compare quantities in the classroom (e.g., five times as many whiteboard pens as erasers, three times as many windows as doors, four times as much water as lemonade concentrate). Money can be a meaningful context, as seen in the following example, "Comparing Money Raised," from Illustrative Mathematics, (Illustrative Mathematics, 2016c). Luis raised $\$ 45$ for the animal shelter, which was 3 times as much money as Anthony raised. How much money did Anthony raise?

In fifth grade, students prepare or middle school work with ratios and proportional reasoning by interpreting multiplication as scaling. They examine how numbers change as the numbers are multiplied by fractions. Based on their previous work with whole number multiplication, students may overgeneralize, and believe that multiplication "always makes things bigger." Teachers can anticipate such misconceptions and plan investigations to allow for exploration of various multiplicative situations (DI 1, 2; CC 2, 3). Students should have ample opportunities to examine the following cases:
a) When multiplying a number greater than one by a fraction greater than one, the number increases.
b) When multiplying a number greater than one by a fraction less than one, the number decreases. This is a new interpretation of multiplication that needs extensive exploration, discussion, and explanation by students.

Examples:

- "I know $\frac{3}{4} \times 7$ is less than 7 , because I make 4 equal shares from 7 but I only take 3 of them ($3 / 4$ is a fractional part less than one). If l'm taking a fractional part of 7 that is less than 1 , the answer should be less than 7."
- "I know that $2 \frac{2}{3} \times 8$ should be more than 8 , because 2 groups of 8 is 16 and $2 \frac{2}{3}>2$. Also, I know the answer should be less than $24=3 \times 8$, since $\frac{2}{3}<3$."
- "I can show by equivalent fractions that $\frac{3}{4}=\frac{3 \times 5}{4 \times 5}$. But I also see that $\frac{5}{5}=1$, so the result should still be equal to $\frac{3}{4}$.,

Story contexts matter greatly in supporting students' robust understanding of the operations. Multiplication and division situations move beyond whole numbers, as students develop understanding of fractions and measure lengths to the quarter inch in third grade (3.MD.B.4), and later calculate area of rectangles with fractional side lengths. As noted in Chapter 3, historically, the majority of story problems and tasks children experienced in the younger grades tended to rely on contexts in which things are counted rather than measured to determine quantities (how many apples, books, children, etc., versus how far did they travel, how much does it weigh). Increased use of measurement contexts in the primary grades will support a student's later work with fractions. A student who solves a measurement problem involving whole numbers will
be able to apply the same reasoning to a problem involving fractions. Note that the Table of Common Multiplication and Division Situations above includes examples that call for measurement as well as for counting. The intent is to promote increased use of measurement contexts at all elementary grades.

Views/Interpretations of the Operation of Division

Students work with division alongside multiplication, and develop the understanding that these are inverse operations. They come to recognize division in two different situations: partitive division (also referred to as fair-share division), which requires equal sharing (e.g., how many are in each group?); and quotitive division (repeated subtraction or measurement division), which requires determining how many groups (e.g., how many groups can you make?) (3.OA.A.2).

Partitive Division (also known as Fair-Share or Group Size Unknown Division)

In partitive division situations, the number of groups or shares to be made is known, but the number of objects in (or size of) each group or share is unknown.

Discrete (counting) Example: There are 12 apples on the counter. If you are sharing the apples equally among three bags, how many apples will go in each bag?

Measurement Example: There are 12 quarts of milk. If you are sharing the milk equally among three classes, how much milk will each class receive?

Quotitive Division (also known as Measurement Division, Repeated Subtraction
Division or Number of Group Unknown Division)

In quotitive division situations, the number of objects in (or size of) each group or share is known, but the number of groups or shares is unknown.

Discrete (counting) Example: There are 12 apples on the counter. If you place three apples in each bag, how many bags will you fill?

There will be four bags of apples

Measurement Example: There are three quarts of milk. If you give three quarts to each class, how many classes will get milk?

Both interpretations of division should be explored, as they both have important uses for whole number and for fraction situations. The action called for in the sample problems above illustrate that a quotitive situation typically differs from the action involved in a comparable problem posed in a partitive context. Representations of the actions will differ, and attention to how and why this occurs supports understanding of these two interpretations of division. In these grades, teachers use the language of equal sharing, number of shares (or groups), repeated subtraction, and the size of each group, with students rather than the more formal terms, partitive or quotitive. Again, teachers need to support students as they acquire the language of mathematics by teaching and modeling precise language and by giving students opportunities to practice that language.

Students use the inverse relationship between multiplication and division when they find the unknown number in a multiplication or division equation relating three whole numbers. Viewing division as the inverse of multiplication presents a natural opportunity for introducing the use of a letter to stand for an unknown quantity (SMP.4, 6; 3.OA.A.4; 4.OA.A.3). Students may be asked to determine the unknown number that makes the equation true in equations such as $8 \times n=48,5=n+3,6 \times 6=n$ (3.OA.A.4, 3.OA.D.8).

Acquiring understanding of variables is an ongoing process that begins in grade three and increases in complexity through high school mathematics.

Example: There are four apples in each of the bags on the counter, and there are 12 apples altogether. How many bags must there be? The student can write the equation n x 4 and solve for n by thinking "what times four makes 12?" a missing factor approach that utilizes the inverse relationship between multiplication and division.

In grade three, students learn and develop the concept of division, building on the understanding of the inverse relationship between multiplication and division (3.OA.B.5, 6, 3.OA.C.7). Grade-four students find whole number quotients, limited to single digit divisors and dividends of up to four digits (4.NBT.B.6). Students in grade five extend this understanding to include two-digit divisors and solve division problems (5.NBT.B.6). In grades four and five, students benefit from using methods based on properties, the relationship between multiplication and division, and place value to solve, illustrate, and explain division problems (Carpenter et.al., 1997; Van de Walle et al., 2014). The acquisition of the standard algorithm for division of multi-digit numbers is reserved for grade six (6.NS.B.2).

Development of the Operation of Division

Grade 3	Grade 4	Grade 5	Grade 6
Understand division as the inverse of multiplication (3.OA.B.6)	Solve division word problems (4.OA.A.2)	Use strategies based on place value, properties of operations and/or the relationship between multiplication and division to find quotients in division problems with two-digit divisors and up to 4- digit dividends; illustrate and explain the results (5.NBT.B.6)	Apply and extend previous understandings of multiplication and division to divide fractions by fractions and use visual fraction models and equations to represent the problem (6.NS.A.1)

Grade 3	Grade 4	Grade 5	Grade 6		
Divide within 100 using the inverse relationship between multiplication and division (3.OA.C.7)	Use strategies based on place value, properties of operations and/or the relationship between multiplication and division to find quotients in division problems with one-digit divisors and up to 4-digit dividends; illustrate and explain the results (4.NBT.B.6)	Divide decimals to hundredths using strategies based on place value, properties of operations and/or the relationship between multiplication and division. Use a written method and explain reasoning (5.NBT.B.7)	n	\quad	n/a
:---					

CC3: Taking Wholes Apart and Putting Parts Together - Whole Numbers

Elementary students come to understand the structure of the number system by building numbers and taking them apart; they make sense of the system as they explore and discover numbers inside numbers. A significant part of students' mathematical work in grades three, four, and five is the development of efficient methods-methods that they understand and can explain-for each operation with whole numbers. By engaging in meaningful activities and explorations, students gain fluency with multiplication and division with numbers up to 10 . They discover ways to apply the commutative and associative properties to solve multiplication problems. They use place value understanding and the distributive property to simplify multiplication of larger numbers.

Students use place value, take wholes apart, put parts together, and find numbers inside numbers when they

- use the four operations with whole numbers to represent and solve problems (3.OA.A.3, 3.OA.C.7, 3.OA.D.8; 3.NBT.2; 4.OA.A.2, 3, 4.OA.B.4.NBT.B.4, 5, 6; 5.NBT.B.5, 6);
- use place value understanding and properties of operations to perform multi-digit arithmetic (3.OA.C.7, 3.OA.D.8; 4.NBT.B.4, 5; 5.NBT.B.5, 6);
- build fluency for products of one-digit numbers (3.OA.C.7);
- gain familiarity with factors and multiples (3.OA.B.6; 4.OA.B.4); and
- identify, generate, and analyze patterns and relationships (3.OA.D.9; 3.NBT.A.1; 4.OA.C.5, 4.NBT.A.1, 3).

Development of students' use of the SMPs continues as they

- apply the mathematics they already know to solve multiplication and division problems (SMP.1, 4);
- use pictures and/or concrete tools to model contextually based problems (SMP.4, 5);
- communicate thinking using precise vocabulary and terms (SMP.3, 6); and
- use patterns they discover as they develop meaningful, reliable and efficient methods to multiply and divide (SMP.2, 4, 6, 8) numbers within 100.

Strategies and Invented Methods for Multiplication and Division

Students need opportunities to develop, discuss, and use efficient, accurate, and generalizable methods to compute. Explicit instruction in making reasonable estimates, along with ample practice with situations that call for estimation, strengthens students' ability to compute accurately, to explain their thinking, and to critique reasoning. The goal is for students to use general written methods for multiplication and division that they can explain and understand using visual models and/or place-value language (SMP.2, 6, 8; 3.OA.1, 3.OA.C.7; 4.NBT.B.5). In grade five, students learn the standard algorithm for multiplying multi-digit numbers, connecting this abstract method to their understanding of the operation of multiplication (SMP.2, 8; 5.NBT.A.1). Research reminds us that students who use invented strategies before applying standard
algorithms understand base-ten concepts more fully and are better able to apply their understanding in new situations than students who learn standard algorithms first (Carpenter et.al., 1997). There is further merit in fostering students' use of informal methods before teaching algorithms. "The understanding students gain from working with invented strategies will make it easier for you to meaningfully teach the standard algorithms" (Van de Walle et al., 2014).

Children often invent ways to take numbers apart to find an easier way to solve a problem. Students who know some, but not all multiplication facts use invented strategies to calculate 7×8 :

Student A: I know that $5 \times 8=40$, and then there are two more eights, so that makes 16. And then I add $40+16=56$, so $7 \times 8=56$.

Student A used the distributive property. To help the class recognize the usefulness of the property, the teacher draws an array of stars: eight rows of stars with seven stars in each row. As shown below, the teacher separates the columns to represent the student's thinking, showing eight rows with five (red) stars in each row and eight rows with two (black) stars in each row. The teacher invites Student A to show the class how this drawing represents their thinking.

Student A uses the pen to write " 40 " below the red part of the drawing, and 16 below the black part.

Student A explains: The red part is 8×5, and then the black part is 8×2, so it's $40+16$. Student B: I knew that $7 \times 7=49$, and then there's one more seven, so I added $49+7=$ 56.

The teacher invites Student B to show the class the equations they used. Student B writes: $7 \times 7=49$, and $49+7=56$.

The teacher checks with the class for understanding of what Student B did, and calls on two other students to re-explain this strategy.

The teacher asks the class to consider whether Student B used the distributive property, and how they could illustrate Student B's thinking. With input from classmates, Student B records the image here, illustrating a 7×7 unit (square) rectangle beside a 7×1 unit rectangle. The corresponding multiplication $(7 \times 7=49)$ and addition $(49+7=56)$ are included in the diagram. The teacher notes that if the 1-unit width of the smaller rectangle were indicated, it would make the multiplication $7 \times 1=7$ evident (the teacher's suggestion is noted in a contrasting color in the diagram).

As students begin to multiply two-digit numbers using strategies based on place value and properties of operations (SMP.2, 7, 8; 3.OA.B.5, 3.OA.C.7; 4.NBT.B.5, 6), they find
and explain efficient methods. Grade-four students record their processes with pictures and manipulative materials as well as with numbers.

To multiply 36×94, three students use place value understanding and the distributive property, yet they use three different recording methods to show their thinking.

Student A labels the partial products within each of the four rectangles in the picture: $2700,540,120$, and 24 , and calculates the final sum beside the sketch.

Student B calculates the four partial products and shows the thinking for each.

While it is essential that students understand and can explain the methods they use, variations in how they record their calculations are acceptable at this stage (Fuson and

Beckmann, 2013). The recording method shown by Student C (below), for example, reflects the same thinking as that of Student D (below), but the locations where the students show the regroupings are different.

Student C uses the standard algorithm with the regroupings shown above the partial products rather than above the " 94 " in the problem.

Thinking:
$6 \times 4=24$. The 4 is recorded in the ones place and the 2 tens are recorded in the tens column.
$6 \times 90=540$. The 40 is shown by the 4 in the tens place; the 5 hundreds are recorded in the hundreds column.
$30 \times 4=120$. The 20 is recorded in the tens and ones places; the 1 hundred is recorded in the hundreds column.
$30 \times 90=2700$. The 7 hundreds are recorded in the hundreds place; the 2 thousands are recorded in the thousands place.

Student work:

Student D uses the standard algorithm with the regroupings shown above the factor "94."

1 - This 1 represents the 100 in $30 \times 4=120$
$\mathbf{2}$ - The 2 represents two 10 s in $6 \times 4=\mathbf{2 4}$

During thoughtfully guided class discussion, perhaps on several occasions, the connections among the pictorial representation (A), the partial products method (B), and the standard algorithm (C and D) become clear.

In order to multiply using the standard algorithm successfully and with understanding in grade five (5.NBT.B.5), students will need guidance in making connections between the increasingly abstract methods of multiplying two-digit numbers. Building understanding with concrete materials (e.g., base ten blocks) and visual representations (e.g., more generic rectangular sketches) allows students to build the necessary foundation for the formal algorithm. Students will rely on these skills and understandings for years to come as they continue to multiply and divide multi-digit whole numbers and to add, subtract, multiply, and divide rational numbers.

The table below indicates the grade levels at which the CA CCSSM call for students to use each of the standard algorithms. In general, the standards support the use of invented strategies and recording methods as students acquire early understanding of each operation, followed by the implementation of more formal algorithms at subsequent grade levels. A longitudinal study compared groups of students who used invented algorithms before they used standard algorithms with students who used standard algorithms from the beginning. The researchers (Carpenter et.al., 1997) concluded that "invented strategies can provide a basis for developing understanding of multidigit operations, even when algorithms are taught." Some parents and guardians may express discomfort with the CCSSM expectation that instruction in standard algorithms should follow, rather than initiate, students' computation efforts. Indeed, in the past, standard algorithms were typically taught as the primary and perhaps the only
way to solve mathematics problems. Educators can share with families that research has revealed many benefits of invented strategies, including:

- students make fewer computation errors,
- less re-teaching is needed,
- students develop number sense and increase their flexibility with number, and
- students gain agency as doers and owners of mathematics (Van de Walle et al., 2014).

Everyday Mathematics offers guidance for families, explaining how too-early instruction in standard algorithms can often lead to erroneous and even harmful ideas. Students may come to believe that mathematics is mostly about memorizing, that mathematics problems should be solved in a few minutes, and that there is just one right way to solve a problem.

Note that the CA CCSSM call for no standard algorithms in transitional kindergarten through grade three. The progression of instruction in standard algorithms begins with the standard algorithm for addition and subtraction in grade four; multiplication is addressed in grade five; the introduction of the standard algorithm for whole number division occurs in grade six.

Development of Standard Algorithms across Grades TK-6

Addition and Subtraction	Multiplication	Division	Operations with Decimals
Grade 2: 2.NBT. 5 Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	Grade 3: 3.NBT. 3 Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times 80,5 \times$ 60) using strategies based on place value and properties of operations.	Grade 4: 4.NBT. 6 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Grade 5: 5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
Grade 3: 3.NBT. 2 Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	Grade 4: 4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two twodigit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Grade 5: 5.NBT. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	n/a

Addition and Subtraction	Multiplication	Division	Operations with Decimals
Grade 4: 4.NBT.4	Grade 5: 5.NBT.5	Grade 6: 6.NS.2	Grade 6: 6.NS.3
Fluently add and subtract multi-digit whole numbers using the standard algorithm.	Fluently multiply multi-digit whole numbers using the standard algorithm.	Fluently divide multi- digit numbers using the standard algorithm.	Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Pattern investigation is a powerful means of building understanding, and can provide access for students with visual strengths and any students who lack confidence with numerical tasks. Investigating patterns helps students develop facility with multiplication, and supports them on their path to fluency. There are many patterns to be discovered by exploring the multiples of numbers. As they explore patterns visually, students find, describe, and color patterns on number charts. They engage in partner and/or class conversations in which they notice and wonder, explain their discoveries and listen to and critique others' discoveries. Examining and articulating these mathematical patterns is an important part of the work on multiplication and division.

Example: On a multiplication table, each student colors in the multiples of a designated factor (in this case, multiples of 4). The teacher poses questions, prompting students to notice and wonder why the pattern they see occurs, and what all these multiples of four have in common.

\times	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20
$\mathbf{3}$	3	6	9	12	15	18	21	24	27	30
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40
$\mathbf{5}$	$\mathbf{5}$	10	15	20	25	30	35	40	45	50
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60
$\mathbf{7}$	7	14	21	28	35	42	49	56	63	70
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80
$\mathbf{9}$	9	18	27	36	45	54	63	72	81	90
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100

Students next circle on the 4 s chart all the multiples of four that are also multiples of 5 $(20,40,60,80,100)$ and analyze why only those 5 multiples coincide, where they are located on the table, what those numbers have in common.

Fluency

Fluency is an important component of mathematics; it contributes to a student's success through the school years and will remain useful in daily life as an adult. What does fluency mean in elementary grade mathematics? Content standard 3.OA.C.7, for example, calls for third graders to "Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division ... or properties of operations." Fluency means that students use strategies that are flexible, efficient, and accurate to solve problems in mathematics. Students who are comfortable with numbers and who have learned to compose and decompose numbers strategically develop fluency along with conceptual understanding. They can use known facts to determine unknown facts. They understand, for example, that the product of 4×6 will be twice the product of 2×6, so that if they know $2 \times 6=12$, then $4 \times 6=2 \times 12$, or 24 . In the past, fluency has sometimes been equated with speed, which may account for the common, but counterproductive, use of timed tests for practicing facts. But in fact, research has found that, "Timed tests offer little insight about how flexible students are
in their use of strategies or even which strategies a student selects. And evidence suggests that efficiency and accuracy may actually be negatively influenced by timed testing." (Kling and Bay-Williams, 2014, 489).

Fluency is more than the memorization of facts or procedures, and more than understanding and having the ability to use one procedure for a given situation. Fluency builds on a foundation of conceptual understanding, strategic reasoning, and problem solving (NGA Center and CCSSO, 2010; NCTM, 2000, 2014). To develop fluency, students need to connect their conceptual understanding with strategies (including standard algorithms) in ways that make sense to them.

Reaching fluency with multiplication and division within 100 represents a major portion of upper elementary grade students' work. Practice should be organized to maximize student success. Some additional suggestions to support fluency and increase efficiency in learning multiplication and division facts include:

- Focus most heavily on products and unknown factors students understand but in which they are not yet fluent.
- Continue meaningful practice-and extra support as necessary-for those students who need it to attain fluency.
- Encourage students to use, work with and explore numbers.

When practice is varied, playful, and tailored to student needs, students enjoy and learn more mathematics readily (Boaler, 2015; Kling and Bay-Williams, 2014, 2015). Interesting, worthwhile facts practice can be accomplished by engaging students in number talks/strings and games. Familiar card games such as Concentration or War are easily adapted to provide fact practice (Kling and Bay-Williams, 2014, 493).

For example, pairs of students can use a deck of playing cards (with the face cards removed) to practice multiplication facts: The cards are shuffled and four cards are turned face up between the players. The remaining cards are placed face down in a stack. Player A selects two of the face-up cards, calculates the product and explains the
strategy they used. Player B confirms or challenges the product-they may ask for further explanation of the strategy—and if the product is correct, Player A claims those two cards. Player B turns over two cards from the stack to replace those taken by Player A, and then takes their own turn. For further discussion of fluency and additional resources, see Chapter 3.

The acquisition of fluency with multiplication facts begins in third grade and development continues in grades four and five. Together, this acquisition establishes the foundation for work with ratios and proportions in grades six and seven. To support this development, teachers must provide students with learning opportunities that are enjoyable, make sense, and connect to previous learning about the meanings of operations and the properties that apply. Research shows that when students are under time pressure to memorize facts devoid of meaning, working memory can become blocked. Such stressful experiences tend to defeat learning, and for many students can lead to persistent, generalized anxiety about their ability to succeed in mathematics (Boaler, Williams, and Confer, 2015).

The following are some general strategies that can be used to help students know from memory all products of two one-digit numbers (3.OA.C.7).

Strategies for Learning Multiplication Facts (SMP.2, 4, 8; 3.OA.C.7):

- Multiplication by zeros and ones
- Doubles (twos facts), doubling twice (fours), doubling three times (eights)
- Tens facts (relating to place value, 5×10 is 5 tens, or 50)
- Fives facts (knowing that the fives facts are half of the tens facts)
- Know the squares of numbers (e.g., $6 \times 6=36$)
- Patterns (e.g., for nines, $6 \times 9=6 \times 10-6 \times 1=60-6=54$)

As students develop strategies for solving multiplication problems, they naturally use properties of operations to simplify the tasks. Students are not explicitly required to call the properties they use by their formal names, but they are expected to apply them strategically throughout these grades as they calculate quantities (SMP.5, 7; 3.OA.B.5, 3.OA.C.7; 4.NBT.B.4, 6; 5.OA.A.1, 2; 5.NBT.A.4, 5.NBT.B.5). Given that precise mathematical language is expected at all grades (MP.6) and that students acquire language readily when it is used consistently and in context, teachers can encourage students' use of the names of the properties involved in the mathematics they are doing. Teachers support facility with the operations of arithmetic by providing frequent opportunities for students to explore and discuss various multiplication strategies and properties (SMP.3, 4, 5, 8, ELD.P9), and by highlighting the efficacy of the strategies as they arise in practice (Kling, Bay-Williams, 2015).

In this brief classroom episode, the teacher challenges the students to multiply 7×24 and to explain their strategies. The goal is to promote students' critical examination of several methods, and to look for connections among them. Several students explain their thought processes for solving 7×24. The teacher records students' methods on the board, based on the responses below, using symbolic notation.

- Jax: I skip counted by two seven times, and $7 \times 2=14$, so that means $7 \times 20=$ 140 because 20 is ten times as much as two. Then I had to multiply 7×4, and

2025 2026 2027 2028 2029 2030
that was 28 . I know 2×7 is 14 , so I added $14+14$. Then I added $140+28$ and got 168.

- Lucca: I used 25 instead of 24 . I did 7×25 and that equals 175 , because that's like 7 quarters. But it's not really 25 , it is 24 , so I had to take away an extra seven. So I took away five (of the seven) to get 170, and then took away two more to get to 168 .

Pippin
7×24
$10+\underline{\underline{10+}} 4$
$7 \times 10=70$
$7 \times 10=70$
$70+70=140$
$\underline{\underline{7 \times}} 4=28$
$140+28=168$

- Pippin: My way is kind of like Jax's. I know $7 \times 10=70$, and there are two tens in 24 , so I did 7×10 again. $70+70=140$. And $7 \times 4=28$, so $140+28=168$.

Jax	Lucca	Pippin
$2,4,6,8,10,12,14$, so	$7 \times 25=175$	$7 \times 10=70$
$7 \times 2=14$	$175-5=170$	$7 \times 10=70$
$7 \times 20=140$	$170-\mathbf{2 - 1 6 8}$	$70+70=140$
$7 \times 2=14$, and $14+14=28$,		
so $7 \times 4=28$		
$140+28=168$		$7 \times 4=28$

The teacher asks the class to consider what is the same and what is different about the three methods. Students point out that all three methods produce the same result, and that they all took the number 24 apart, but that they did that differently. A few students say that that method is tricky and they don't know why Lucca did that. The teacher replies that they will talk about Jax and Pippin's methods first and then ask Lucca to explain the thinking behind that method.

The teacher asks Jax and Pippin to describe more about how their methods are alike.

- Jax: We both broke the 24 apart and we both multiplied 7×4.
- Pippin: And we both got the same product.
- Teacher: So, you both knew that you could multiply 7×24 by taking the 24 apart, finding parts of the product and then putting all the parts together?
- Jax and Pippin: Yes!
- Teacher: Aha! So, you used the distributive property! We will have to try some more problems and see if your method always works.
- Teacher: Now let's figure out whether Lucca used the distributive property, too. The class focuses attention on Lucca's method, and at the end of the discussion the teacher tells the students that they will have more opportunities to try out these methods on other problems and to see when they are useful and how they can help solve problems more easily.

Commutative Property: As they work with equally-sized groups, arrays, and area, students encounter many opportunities to employ the commutative property of multiplication. They may notice that they also use commutativity to solve addition problems. In story contexts, there is a difference between "two groups of three objects each" (e.g., pencils, ants, pounds, quarts) and "three groups with two objects each." Students discover the commutative property by noticing that the result in both cases is a total of six objects. This also supports their ability to become fluent with multiplication within 100: if a student knows $4 \times 6=24$, then they know that 6×4 also is equal to 24 .

Associative Property: Experiences in which students must multiply three factors, such as $3 \times 5 \times 2$, provide opportunities to apply the associative property. A student can first calculate $3 \times 5=15$, then multiply 15×2 to find the product 30 . Another student may
find $5 \times 2=10$ first, then multiply 3×10 to find the same product, 30. Again, students can observe that the associative property applies to both addition and multiplication.

Distributive Property: Students frequently use the distributive property to discover products of whole numbers (such as 6×8) based on products they can find more easily. A student who knows that $3 \times 8=24$ can use that to recognize that since $6=3+3$, then $6 \times 8=(3+3) \times 8=3 \times 8+3 \times 8$, and that $3 \times 8+3 \times 8=24+24=48$.

Another student may use knowledge that $6 \times 8=6 \times(4+4)$ to solve: $6 \times 8=6 \times(4+4)$ $=6 \times 4+6 \times 4=24+24=48$.

The distributive property may also involve subtraction. A student may solve 6×8 by beginning with the familiar $6 \times 10: 6 \times 8=6 \times(10-2)=6 \times 10-6 \times 2=60-12=48$.

CC3: Taking Wholes Apart and Putting Parts Together - Fractions

In grades one and two, students partitioned circles and rectangles into two, three, and four equal shares and used fraction language (e.g., halves, thirds, half of, a third of). Their experiences with fractions were concrete and related to geometric shapes. Starting in grade three, important foundations in fraction understanding are established, and the topic calls for careful development at each level.

There are several ways to think about fractions, which increases the complexity and significance of this body of learning. Children begin formal work with fractions in third grade, with a focus on unit fractions and benchmark fractions. Fourth and fifth grade students move on to fraction equivalence and operations with fractions. Fifth grade mathematics includes the development of the meaning of division of fractions, a sophisticated idea which needs careful attention and preparation in prior grades. Students often struggle with key fraction concepts, such as "Understand a fraction as a number on the number line..." (3.NF.2) and "Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions" (5.NF.B.7). It is imperative to present fractions in meaningful contexts and to allow ample time for the careful development of fraction concepts at each stage.

Proficiency with fractions is essential for success in more advanced mathematics such as percentages, ratios and proportions, and algebra.

To develop fraction concepts, upper-elementary students should

- develop understanding of fractions as numbers (3.NF.1, 2);
- understand decimal notation for fractions, and compare decimal fractions (4.NF.B.5, 6, 7);
- extend understanding of fraction equivalence and ordering (3.NF.3; 4.NF.A.1, 2); and
- apply and extend previous understandings of operations to add, subtract, multiply and divide fractions (4.NF.B.3, 4; 5.NF.1-7).

As students work with fractions, they use the SMPs. For example:

- Think quantitatively and abstractly, connecting visual and concrete models to more abstract and symbolic representations of fractions (SMP.2).
- Model contextually based problems mathematically, and using a variety of representations (SMP.4, 5).
- Select and use tools such as number lines, fraction squares, or illustrations appropriately to communicate mathematical thinking precisely (SMP.5, 6).
- Make use of structure to develop benchmark fraction understanding (SMP. 7).

Understanding fractions as numbers; equivalence, and ordering fractions

Grade three students begin with unit fractions, building on the idea of partitioning wholes into equal parts and become familiar with benchmark fractions such as onehalf. In fourth grade, the emphases are on equivalence, ordering, and beginning operations with fractions and decimal fractions. Fifth-grade students apply their previous understandings of the operations to add, subtract, multiply and divide fractions (in limited situations).

Development of Fraction Concepts Grades 3-5

$\begin{array}{c}\text { Development of } \\ \text { Fraction Concepts: } \\ \text { Grade 3 }\end{array}$	$\begin{array}{c}\text { Development of } \\ \text { Fraction Concepts: } \\ \text { Grade 4 }\end{array}$	$\begin{array}{c}\text { Development of } \\ \text { Fraction Concepts: } \\ \text { Grade 5 }\end{array}$		
$\begin{array}{l}\text { Understand unit fractions } \\ \text { as equal parts of a whole } \\ \text { (3.NF.A.1) }\end{array}$	$\begin{array}{l}\text { Explain equivalence of } \\ \text { fractions and generate } \\ \text { equivalent fractions } \\ \text { (4.NF.A.1) }\end{array}$	$\begin{array}{l}\text { Solve addition and } \\ \text { subtraction fraction } \\ \text { problems by finding } \\ \text { equivalent fractions, } \\ \text { using visual models or } \\ \text { equations (5.NF.A.1, 2) }\end{array}$		
$\begin{array}{l}\text { Understand fractions as } \\ \text { numbers on a number } \\ \text { line } \\ \text { (3.NF.A.1) }\end{array}$	$\begin{array}{l}\text { Compare fractions with } \\ \text { unlike numerators and } \\ \text { denominators by finding } \\ \text { equivalent fractions } \\ \text { (4.NF.A.2) }\end{array}$	$\begin{array}{l}\text { Use benchmark fractions } \\ \text { and number sense to } \\ \text { estimate with fractions }\end{array}$		
and determine				
reasonableness			$\}$	(5.NF.A.2)
:---				

2117 An important goal is for students to see unit fractions as the basic building blocks of all fractions, in the same sense that the number one is the basic building block of whole
numbers. Students make the connection that, just as every whole number is obtained by combining a sufficient number of ones, every fraction is obtained by combining a sufficient number of unit fractions (adapted from UA Progressions Documents, 2013a). While the idea of " $\frac{3}{4}$," as a number may be difficult for students to grasp initially, "putting together three one-fourths" is more readily accessible. To develop this concept, students can use concrete materials to build a number, and then see the connections between the concrete model and the representational, and abstract approaches.

Students might use concrete materials such as fraction bars (in this case, one orange rectangle is identified as one-fourth of the whole) to physically put together three onefourth pieces. They can illustrate this rectangular representation on paper, and record it symbolically as $1 / 4+1 / 4+1 / 4=3 / 4$. Teachers support students in making these connections by asking that they record their thinking in several ways, giving opportunities for discussion and comparison of various representations, and being explicit about how the representations express the same idea.

three foulths

one whole

To probe students' current understanding of fractions as equal parts of a whole, the teacher poses a question to the class: "What fraction of this square is the blue triangle?"

Akiko and Parker study the square arrangement of four tangram pieces. Akiko says, "The blue triangle is $1 / 4$, because there are four pieces." Parker says, "I don't think that's $1 / 4$, but I'm not sure what it is." As they worked with their tangram pieces, Parker
put two of the small triangles together, forming a square. Akiko commented, "The two little triangles make a square just like the purple square. What if we build our own square like this one?" They used tangram pieces to build their own four-piece square. Once they completed building the square, Parker picked up the large triangle, and flipped it over to cover the three smaller pieces (two triangles and square). Akiko exclaimed, "I get it! The big triangle is half of the square, not $1 / 4$!"

At the beginning stages of fraction work, students need considerable experience exploring various concrete and visual materials in order to build understanding of fractions as equal parts of a whole (3.NF.1,3; ELD I7). It is natural for students, using their understanding of whole numbers, to think that if a whole is split into 4 parts, regardless of whether those parts are of equal size, then each part must $b 1 / 4$ of the whole. Similarly, if students rely on their whole number thinking, they often expect that a unit fraction with a smaller denominator will be less than a unit fraction with a larger denominator, e.g., 1/4 must be less than 1/6 (Van de Walle et al., 2014).

Third- through fifth-grade students explore fractions with concrete tools and develop the more abstract understanding of fractions on the number line (SMP.2, 4, 5; 3.NF.2, 4.NF.2, 3, 4; 5.NF.3, 4, 6). Round fraction pieces are commonly available, and serve well for establishing such ideas as $1 / 4$ is half of one half, and $1 / 6$ is a smaller size fraction piece than $1 / 2$ and that 3 sixths pieces together make a half-circle equal to $1 / 2$. Using multiple models for fractions can help to enlarge and solidify concepts. As with other tools used for building mathematical concepts, each fraction manipulative has advantages as well as limitations. While fraction circles are helpful for establishing relative sizes of unit fractions, a number line or fraction bars might be a better choice for finding the sum of $1 / 2$ and $1 / 3$.

Other useful manipulatives for fractions include:

- Fraction bars
- Fraction squares or rectangles
- Tangrams
- Pattern block pieces
- Cuisenaire rods
- Paper strips, for folding halves, fourths, thirds, etc.
- Rulers/meter sticks
- Number lines
- Geoboards

The process of preparing some of their own fraction tools is valuable for young students (Burns, 2001). It increases their understanding of fractions as parts of a whole and supports recognition of the relative sizes of fractional parts. For example, they can create fraction strips from construction paper. As they cut halves, fourths, and eighths of the whole, students discover that $1 / 4$ is half of $1 / 2$, and $1 / 8$ is half of $1 / 4$, leading to the generalization that when a whole is partitioned into more equal shares, the parts become progressively smaller.

Alternatively, students can fold paper strips to create fractional parts.

Examples:

- Show the fraction $1 / 4$ by folding the piece of paper into equal parts. "I know that when the number on the bottom is 4 , I need to make four equal parts. By folding the paper in half once and then again, I get four parts and each part is equal. Each part is worth $1 / 4$."

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

- Shade $3 / 4$ using the fraction bar you created. "My fraction bar shows fourths. The 3 tells me I need three of them, so l'll shade them. I could have shaded any three of them and I would still have 3/4."

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Example (Representing Fractions on the Number Line): Use your fraction bar and the number line given to locate the fraction 3/4. Explain how you know your mark is in the right place.

Solution: "When I use my fraction strip as a measuring tool, it shows me how to divide the unit interval into four equal parts (since the denominator is 4). Then I start from the
mark that has ' 0 ' and I measure off three pieces of $1 / 4$ each. I circled the pieces to show that I marked three of them. This is how I know I have marked 1/4."

Ordering fractions from least to greatest provides opportunity for students to reason about relative sizes of fractions. Students can determine how to put fractions such as $5 / 3,2 / 5$, and $5 / 4$. in order from least to greatest, using reasoning along with concrete materials or drawings. They can explain verbally how they know that $5 / 3$ is greater than $5 / 4$. "There are five thirds and five fourths, but thirds are bigger pieces than fourths, so $5 / 3$ is bigger than $5 / 4$. " Benchmark reasoning is also useful here. "I know that $2 / 5$ is less than one and it's even less than $1 / 2$. And $5 / 3$ and $5 / 4$ are both more than 1 . So, $2 / 5$ is the smallest."

Comparing and ordering fractions can be challenging for upper elementary students. They need repeated experiences reasoning about fractions and justifying their conclusions using a variety of visual fraction models to develop benchmark reasoning (SMP.1, 2, 4, 5, 7; ELD I6, P9). Students in these grades who are overly reliant on their understanding of whole numbers may have particular difficulty recognizing the relationship between the numerator and denominator of a fraction. Frequent, sustained discussion of ideas in both small groups and whole class settings will be necessary.

Three students were discussing how to put $1 / 3,3 / 5$, and $1 / 2$ in order from least to greatest. Alana is a linguistically and culturally diverse student with strong problemsolving skills, yet is reluctant to share ideas with the whole class. As is the case for Alana, many students who are learning English are more confident expressing their thinking in small group settings. The teacher has paired Alana with Miriam, who helps Alana practice expressing ideas in English, and Gus, who often uses visual representations to make sense of mathematics situations.

- Miriam: $1 / 3$ and $3 / 5$ are equal because you just add 2 to 1 (the numerator of $1 / 3$) to get 3 (the denominator of $1 / 3$) and you add 2 to 3 (the numerator of $3 / 5$) to get 5 (the denominator of $3 / 5$). So, they're the same.
- Alana: But wait! That doesn't make sense! $1 / 3$ is less, isn't it? Because $3 / 5$ is more than half and $1 / 3$ is not as big as $1 / 2$.
- Gus: Let's do it with our fraction pieces.

The children build $1 / 3,3 / 5$, and $1 / 2$ with their fraction pieces. They compare and find that $1 / 3$ is less than $1 / 2$ and $1 / 2$ is less than $3 / 5$. The conversation continues.

- Miriam: Why didn't my way work?
- Alana: I think because the thirds pieces are not the same size as the fifths pieces.
- Gus: But we only had 1 third, and there are three $1 / 5$ ths, so when you put them together to make $3 / 5$, that's bigger than just one third.
- Alana: Isn't $1 / 2$ a benchmark fraction? I can tell that $1 / 3$ is less than $1 / 2$ because when a fraction is the same as $1 / 2$, the denominator is always two times as big as the numerator. Like, $1 / 2,2 / 4,3 / 6,4 / 8$ and $5 / 10$.
- Miriam: Oh yeah—l remember we talked about how $1 / 2$ can have lots of names. But would you tell me again how you know that $3 / 5$ is bigger than 1/3?

Alana explains again, pointing to the fraction pieces. The teacher, observing the conversation, is pleased to note Alana's involvement, and notes that Alana used the word "benchmark". In several groups, some confusion remains; the teacher decides to conduct a whole-class discussion to develop this idea further.

The grade-four task, Doubling Numerators and Denominators, from Illustrative Mathematics (Illustrative Mathematics, 2016d), provides opportunity for such reasoning and class discussion of fraction concepts.

The task is based on the following:

1. How does the value of a fraction change if you double its numerator? Explain your answer.

2251
2252

2253
2254
2255
2256 2257

2258

2259
2. How does the value of a fraction change if you double its denominator? Explain your answer.

As students are developing fraction concepts and beginning to use fractional notation, they need to recognize $\frac{a}{b}$ as a quantity that can be placed on a number line, and that it may be located between two whole numbers, or may be equivalent to a whole number (where $a=b$). Students develop an understanding of order in terms of position on a number line, following the mathematical convention that the fraction to the left is said to be smaller and the fraction to the right is said to be larger.

The use of precise mathematical terms is essential in order to support all students' understanding: $3 / 4$ is read as "three fourths." Casual language such as "three over four" or "three out of four" (except when discussing ratios or probability situations) undermines fragile understanding of fractions, interferes with academic language acquisition, and may lead to misapplication of whole number reasoning in fraction situations. EL students, especially, need explicit teaching of precise mathematical language, and benefit from its consistent use in mathematics classes.

The number line reinforces the analogy between fractions and whole numbers. Just as 5 is the point on the number line reached by marking off 5 times the length of the unit interval from 0 , so is $5 / 3$ the point obtained by marking off 5 times the length of a different interval as the basic unit of length, namely the interval from 0 to 1.3.

Locating fractions on the number line calls for reasoning about relative sizes of fractions and whole numbers (SMP.2,5, 7). In this context, familiarity and comfort with the use of benchmark fractions is of great value. Where, for example, does $3 / 8$ belong on the number line pictured here? A student who uses benchmark reasoning can begin by locating $1 / 4$ midway between 0 and $1 / 2$, and then place $3 / 8$ midway between $1 / 4$ and 1/2.

In the process of labelling locations on the number line in relation to benchmark numbers such as $1 / 2$, students expand understanding of equivalence. For example, they find that the location marked $1 / 2$ coincides with $2 / 4$. Such observations can lead to powerful insights; students need time to think and talk about fraction ideas.

Snapshot: Grade Three Fractions

As is the case in many classrooms, students vary considerably at any moment in their talents, skill levels, enthusiasm and willingness to persevere. Teachers are regularly challenged to meet the needs of all learners simultaneously. The use of problems that are accessible and can be extended to allow greater depth and exploration, along with strategic student pairings and careful attention to student thinking makes it possible for a teacher to provide appropriate prompts and supports as students work on problems. In this classroom episode, there are two third graders who work together as partners, combining their strengths. Desmond has announced repeatedly since the beginning of the school year a love of mathematics and says, "I like to think about numbers in my head just for fun." Desmond gives evidence of advanced thinking in classwork, often choosing to extend problems beyond what is expected at the grade level. Ellie is a capable thinker, curious, and very verbal. Ellie loves to draw and finds that pictures help make sense of mathematics.

The teacher has chosen this task so that students can use their understanding of the relationship between $1 / 2$ and $1 / 4$ to build larger fractions from unit fractions (3.NF.A.1, 2, 3; SMP.2, 3, 5, 8). Consider the conversation between these two third graders and their teacher as the students work to locate $1 / 4$ and $3 / 4$ on a number line that has only the locations for 0,1 marked.

Desmond: We found $1 / 2$ on the number line; that was easy. Then, half of $1 / 2$ is one-fourth, so we marked one-fourth on the number line.

Ellie: Yes, because $1 / 4$ is half of $1 / 2$, like with our fraction pieces! See? It takes 2 of these (pointing to the distance from 0 to $1 / 4$ on the number line) to get to $1 / 2$. Desmond: And then this is two-fourths (pointing to $1 / 2$), too.

Ellie: What do you mean? That's already $1 / 2$, right?
Desmond: Yes, but it can be $1 / 2$ and also be $2 / 4$; you just said so, really, because you said it takes two $1 / 4$'s to make $1 / 2$.

Ellie: Wait. Let's get the fraction pieces and build 2/4...okay, I think you're right, $1 / 2$ is the same as $2 / 4$.

Teacher: How can that place on the number line be both $2 / 4$ and $1 / 2$? Does that make sense?

Ellie: Yes; I built it and I can draw two fourths and it makes $1 / 2$. So, that's $1 / 4$, then $2 / 4$, and then that will be $1 / 4$!

Teacher: What about this place, then? (pointing to 1). How does that fit in here?
Desmond: It's four fourths. So, 1 can be 1 whole or it can be four fourths! Hey, we can do $3 / 4$ and then $4 / 4$; and keep going! Can we make the number line longer? Or, wait! We can do half of a fourth, can't we? Like fractions in between the fourths?

Teacher: Sure; it sounds like you have an idea about finding more fraction locations. See what you can find, and then shall we ask the class to investigate what other names we can find for one-half and for one?

The CA CCSSM have updated the language describing fractions in which the numerator is greater than the denominator: fractions can be described as less than one, equal to one, or greater than one. The term "improper fraction" carries with it the implication that the fraction must be rewritten in another format, such as a mixed number. Fractions greater than one, such as $5 / 2$, are simply numbers in
themselves and are constructed in the same way as other fractions. Further, depending on the context of a problem, re-naming a fraction greater than one as a mixed number may cause a problem to be less readily understood and/or solved.

For example, to construct $5 / 2$, students might use a fraction strip as a measuring tool to mark off lengths of $1 / 2$, Then they count five of those halves to get 5/2.

Some important concepts related to understanding fractions include:

- Fractional parts must be equal-sized.
- The number of equal parts tells how many make a whole.
- As the number of equal pieces in the whole increases, the size of the fractional pieces decreases.
- The size of the fractional part is relative to the whole.
- When a shape is divided into equal parts, the denominator represents the number of equal parts in the whole and the numerator of a fraction is the count of the demarcated congruent or equal parts in a whole (e.g., $3 / 4$ means that there are 3 one-fourths).
- Common benchmark numbers such as $0,1 / 2,3 / 4$, and 1 can be used to determine if an unknown fraction is greater of smaller than a benchmark fraction.

Understanding decimal notation for fractions, and comparing decimal fractions

In grade four, students use decimal notation for fractions with denominators 10 or 100 (4.NF.C.6), understanding that the number of digits to the right of the decimal point
indicates the number of zeros in the denominator. This lays the foundation for performing operations with decimal numbers in grade five. Students learn to add decimal fractions by converting them to fractions with the same denominator (SMP.2; 4.NF.C.5). For example, students express $3 / 10$ as $30 / 100$ before they add 30/100 + $4 / 100=34 / 100$. Students can use graph paper, base-ten blocks, and other place-value models to explore the relationship between fractions with denominators of 10 and 100 (adapted from Number and Operations-Fractions, 3-5, Progressions for the Common Core State Standards in Mathematics, 2018).

Students make connections between fractions with denominators of 10 and 100 and place value. They read and write decimal fractions, and it is important that teachers encourage students to read decimals in ways that support developing understanding (Van de Walle et al., 2014). When decimals are read using precise language, students learn to write decimals flexibly, e.g., by writing thirty-two hundredths as both 0.32 and $32 / 100$. Conversely, imprecise reading of decimals, such as "0 point 32 " rather than as "thirty-two hundredths" undermines sense-making and obscures the connection between fraction and decimal values. Correct use of language around decimals is particularly important in supporting the learning of linguistically and culturally diverse students.

Students represent values such as 0.32 or $32 / 100$ on a number line. They reason that $32 / 100$ is a little more than $30 / 100$ (or $3 / 10$) and less than $40 / 100$ (or 4/10). It is closer to 30/100, so it would be placed on the number line near that value (SMP.2, 4, 5, 7).

Students compare two decimals to hundredths by reasoning about their size (SMP.3, 7; 4.NF.7). They relate their understanding of the place-value system for whole numbers to fractional parts represented as decimals. Students compare decimals using the meaning of a decimal as a fraction, making sure to compare fractions with the same
denominator and ensuring that the wholes are the same. For example, if the number 0.36 is located as indicated by the blue arrow, where are the numbers 0.67 and 0.92 located? Expressing one's ideas about how numbers are related can be difficult. All students, and particularly linguistically and culturally diverse learners, benefit from direct instruction on the use of compare and contrast language. A student's weak response may indicate insufficient language to express the relationship between decimals and fractions rather than a lack of understanding of the concept.

In grade three, students begin to develop understanding of benchmark fractions. Fourth grade students extend this understanding to connect familiar benchmark fractions with corresponding decimals.

- The teacher asks the students to write the number "five tenths." Some write it as a decimal, and others use the fraction form. To help students recognize that 0.5 is equivalent to $1 / 2$, the teacher calls for students to name the benchmark fraction equal to $5 / 10$, and highlights this connection.
- On a 10×10 square grid, students color in 25 small squares to illustrate the decimal 0.25 . On a comparable grid, students color $1 / 4$ of the whole grid, and discover that $1 / 4$ of the grid is the same number of small squares, 25 . They can use this visual model to see that $1 / 4=0.25$ (Van de Walle et al., 2014). This exercise can be done with other familiar fractions such as $1 / 2,3 / 5$, or $75 / 100$.

Applying and extending previous understanding of operations to add, subtract, multiply and divide fractions

Students are expected to "apply and extend previous understandings" to operate with fractions. To do so, they must deeply understand the meanings of the four operations and be supported in their efforts to make connections between operations with whole
numbers and operations with fractions (SMP.2, 4, 7; 4.NF.B.3, 4; 5.NF.1-7). In grades four and five, students begin operating with fractions; the algorithms for operations with decimals are addressed in grade six (6.NS.B.3). In an active learning environment, where students explore, challenge ideas, and make connections among various topics, they experience mathematics as a coherent, understandable body of knowledge and come to expect that previous learning will support their acquisition of new concepts. A solid understanding of the relationship between addition and subtraction helps a fourth grader solve a problem such as: The recipe calls for 2-1/4 cups of rice. Ravi already has $3 / 4$ cup of rice. How much more rice does Ravi need? While the story problem can be solved using subtraction, the context does not suggest a take-away situation. This problem is more logically interpreted as comparison subtraction (2=1/4 $3 / 4$), to find the difference between the quantities or as missing addend addition ($3 / 4+$ $\ldots=2-1 / 2$), with the intention of finding how much more is needed. Students can represent the situation with visual fraction models as they have done in whole number problem situations. The problem can be modeled quite literally, using measuring cups filled with rice (or a substitute for rice, such as sand), or with fraction tools (fraction bars, for example), a number line, or a bar diagram, as shown here. Class conversation paired with written recordings of the various actions, representations, and equations support students in making the necessary connections between the concrete, representational, and abstract expressions of the problem.

The recipe calls for $21 / 4$ cups of rice. Ravi already has $3 / 4$ cup of rice. How much more rice does Ravi need?

The longer bar, labeled $21 / 4$ cups, is compared to a shorter bar, representing $3 / 4$ cup. The unknown in the problem is represented by the gap between the two lengths.

Intentional, guided class discussion of how these subtraction strategies and illustrations work equally well to solve whole number problems can help students to make necessary connections (SMP.2, 7; 4.NF.B.4, 5.NF.B.6, 7; ELD. Connecting ideas 6).

Teacher: What if the problem involved whole numbers rather than fractions? What if the problem asked instead: The recipe calls for five cups of rice. Ravi already has two cups of rice. How much more rice does Ravi need? How would you solve it and illustrate it?

Students describe to their partners how the two problems are alike.
Teacher: Would the same approach and a similar diagram work to solve the whole number problem? Show us!

Students respond, sharing the thinking and diagrams they used in each case, and make connections between the two.

Multiplication of a fraction by a whole number can be seen as parallel to multiplication of whole numbers. This is an opportunity for reflection on whole number strategies and active investigation and discussion of how these strategies apply with fractions. If 5×4 is understood as "five groups of four," "a rectangle with dimensions of five meters by four meters," or "five copies of the quantity four," then $5 \times 1 / 4$ can be understood as " 5 groups of $1 / 4$," "a rectangle with dimensions of $5 \times 1 / 4$ meters," or "five copies of the quantity $1 / 4$." The strategies and representations used with whole number multiplication—repeated addition, jumps on the number line, or area—can be used with fractions. Tasks and problems presented in contexts that make sense to students make learning accessible, even without direct instruction on "how to multiply fractions."

Whether the student illustrates with fraction manipulatives (five one-fourth pieces), or perhaps 5 jumps of distance $1 / 4$ on a number line, the reasoning is the same as would be used with whole number multiplication (SMP.2, 4, 5, 6; 4.NF.B.4).

- The recipe says to bake the pan of cookies for $1 / 4$ of an hour. How long will it take to bake five pans of cookies, one pan at a time?
- Dean and Jean ran the $1 / 4$ mile track five times. How far did they run?
- At our party, we will give each friend $1 / 4$ pound of candy. There will be five friends at the party. How much candy do we need?
- We are painting a line of the playground to mark the start for the runners. The line will be five feet long, and $1 / 4$ foot wide. If the paint we have will cover four square feet, will that be enough?

To solve the whole number multiplication 5×4, one could use an area interpretation, illustrating the problem with a rectangle of dimensions five units by four units. In the rectangle below, there are five rows of squares, with four squares in each row, for a total of 20 square units.

Using the same reasoning and a comparable illustration, one can use an area interpretation to solve $5 \times 1 / 4$. In this example, the rectangle will have a height of five units and a width of $1 / 4$ unit. The area of this figure can then be seen as five $1 / 4$ unit pieces, or $1 / 4+1 / 4+1 / 4+1 / 4+1 / 4$, $=5 / 4$.

When both factors are fractions less than one, students may expect that multiplication will result in a product that is greater than either factor, as is often the case with whole number multiplication. It can be helpful to remind students that with whole numbers, the product is not always greater than the factors. Multiplying any number (n) by one results
in a product equal to that number, e.g., $1 \times 14=14$. Students can then reason about how the product of two fractions that are less than one can be less than either of the factors, e.g., $1 / 4 \times 2 / 5=2 / 20(S M P .1,6,7)$.

Students sometimes lose sight of what is the whole as they multiply fractions. The understanding that they are finding a part of a part of a whole underlies fraction multiplication and requires emphasis and thoughtful discussion. Illustrations can often mitigate the difficulty of making sense of these situations and can support English learners with a visual of an abstract concept. Again, the illustrations correspond to the ways used for representing whole number multiplication.

- After the party, there was $1 / 3$ of the cake left. Bren ate $1 / 4$ of the remaining $1 / 3$ cake. How much of the whole cake did Bren eat?

There was $1 / 3$ of the cake left. Bren ate $1 / 4$ of the remaining $1 / 3$ cake.

- Zack had 2/3 of the lawn left to cut. After lunch, Zach cut $3 / 4$ of the grass that was left. How much of the whole lawn did Zack cut after lunch? (Van de Walle et al., 2014, 243)

- The milk carton is labelled $1 / 2$ gallon. If Idalia drank $3 / 8$ of the full carton, what fraction of a gallon did Idalia drink?

Jack ran $1 / 3$ of the distance.

Solidly establishing the meaning of multiplication with fractions is essential in order for students to develop the concept of division with fractions in fifth grade. Identifying how fraction division relates to previous work with whole number division supports students in making sense of the concept of fraction division. The goal in fifth grade is for students to understand what it means to divide with fractions, with applications limited to instances involving a unit fraction and a whole number (SMP.2, 7; 4; 5.NF.B.3, 7). This conceptual understanding deserves thoughtful attention to prepare students to continue with proportional relationships in later grades. As with whole-number operations, students who develop and discuss methods that make sense to them as they begin to calculate with fractions will be more capable of applying reasoning in new situations than if they are prematurely taught an algorithm for solving division of fractions problems. The development of algorithms for fraction calculation, such as the common denominator method, is reserved for middle school grades.

Dividing a unit fraction by a whole number, such as $1 / 3 \div 4$, can be related to a comparable problem with whole numbers, such as $3 \div 4$. If there are three cups of soup to share equally among four people, how much soup will each person have? A fraction question that calls for the same reasoning: If there is $1 / 3$ gallon of juice to share equally among four people, how much juice can each person have?

Fifth graders also divide a whole number by a unit fraction, such as $4 \div 1 / 3$. Again, understanding of division with whole numbers and a meaningful context, support students in making sense of this problem: If there are 4 cups of soup, and each serving is $1 / 3$ cup, how many servings of soup are there?

When a fraction problem is presented in a familiar context, students can illustrate the problem in ways that make sense to them, and solve it using logic and invented strategies. It may not be obvious to the student which operation is involved, and yet the solution is accessible.

Snapshot: Dividing by a Unit Fraction

The fifth-grade teacher has selected the Illustrative Mathematics grade-five task, "Dividing by One-Half" (Illustrative Mathematics, n.d.a) as a means for students to grapple with the idea of dividing a whole number by a fraction. Student partners will solve these four fraction problems using their own illustrations and strategies. Then the class will work together to determine which of the four problems can be solved by calculating $3 \div 1 / 2$, and explain how they know.

1. Shauna buys a three-foot-long sandwich for a party and then cuts the sandwich into pieces, with each piece being 1/2-foot long. How many pieces does Shauna get?
2. Phil makes three quarts of soup for dinner. Their family eats half of the soup for dinner. How many quarts of soup does Phil's family eat for dinner?
3. A pirate finds three pounds of gold. In order to protect the riches, they hide the gold in two treasure chests, with an equal amount of gold in each chest. How many pounds of gold are in each chest?
4. Leo used half of a bag of flour to make bread. If Leo used three cups of flour, how many cups were in the bag to start?

Once the students have found solutions, they will discuss with their partners which operation is involved, and write the equation that could be used to calculate the answer.

During the class discussion, students will focus on reaching consensus on which of the four problems calls for the division calculation $3 \div 1 / 2=6$ and justifying their conclusions.

- Number 1 is easily solved based on an illustration of a three-foot long sandwich. The corresponding calculation is $3 \div 1 / 2$, and the question being asked in this case is, "how many $1 / 2$ foot long pieces of sandwich are there in a 3-foot long sandwich?" This is an example of measurement, or quotitive division.

- Number 2 is a multiplication situation, in which the question calls for finding part of a whole. It can be solved by the calculation $1 / 2 \times 3=1-1 / 2$.
- Number 3 calls for the calculation $3 \div 2=1-1 / 2$. It is a division problem, but is not solved by dividing 3 by $1 / 2$.
- Number 4 is another division situation and can be calculated using the equation 3 $\div 1 / 2$ or the equation $3=1 / 2 \times$ [blank] ? This can be thought of as partitive division or as a missing factor situation which asks the question, "three cups of flour is half of what amount of flour?"

The teacher will facilitate a whole-class discussion during which students justify their conclusions and find consensus. The expectations include the following:

- Most (if not all) student pairs will solve at least three of the four problems correctly.
- Justifying which operation is used in each case will be challenging.
- Students will disagree about which operation was used in some cases.

Careful analysis of the meaning of the operations, particularly of division by a fraction, will be necessary; the teacher's questioning and prompts will play a vital role.

CC 4: Discovering Shape and Space

Second-grade students work in one-dimensional space, using rulers to measure length.

The development of two- and three-dimensional space takes place in grades three through five. Younger grade students learned to identify common geometric figures and to count the numbers of sides and corners. In grades three through five, students deepen their understanding of the properties of shapes and apply their understanding to organize shapes into categories and analyze hierarchical relationships.

Students explore shape and space in the upper-elementary grades as they develop the following:

- Strategies for solving problems involving measurement and conversion of measurements from larger to smaller units (4.MD.A.1; 5.MD.A.1)
- Understanding of concepts of area, perimeter, and volume of solid figures (3.MD.C.6; 4.MD.B.3; 5.MD.C.3, 4, 5)
- Understanding of concepts and measurement of angles; draw and identify lines and angles (4.MD.C.5, 6, 7, 4.G.1, 2)
- Ability to reason with shapes and their attributes; categorize shapes by their properties and recognize the hierarchical relationships among two-dimensional shapes (3.G.1, 2; 4.G.2; 5.G.B.3, 4)

In their work with shapes and space concepts, students use the SMPs to

- think quantitatively and abstractly, connecting visual and concrete models to more abstract and symbolic representations;
- select appropriate tools to model their mathematical thinking;
- communicate their ideas clearly, specifying units of measure accurately; and
- discern patterns and structural commonalities among geometric figures.

Students begin exploration of area concepts by covering rectangles with square tiles and learning that these can be described as square units. Two-dimensional measure is a significant advance beyond students' previous experience with linear measure, and
deserves reflection and careful instruction. Initially, students count the number of square units used to find the area.

Students can use one-inch square tiles to cover the surface of a book's cover or the surface of their desks. As students work, the teacher looks for organization in their arrangements of the tiles, wondering, "Are they creating rows? Do they start by forming a frame around the edge of the surface?" Based on observation of various approaches, the teacher asks students to share strategies that enabled them to cover the whole surface without leaving any gaps. By posing questions and inviting comparison of results, the teacher can guide students' development of accurate and efficient methods of measuring area. I see that this group has six rows of tiles. How many tiles are in each row? What do we notice about the number of tiles in each row? How can that help us to figure out the area of this rectangle?

Explorations of area need not be limited to one-inch tiles as the unit of measure. Large squares cut from cardboard or other sturdy materials can be used to measure area of larger areas such as rectangular regions on the playground.

With further tiling experience, students discover that they can multiply the side lengths (the number of rows of tiles x how many tiles are in each row) to find the area more efficiently, and no longer need to count square units singly. They make sense of this by connecting to their prior work with the array model of multiplication. In third grade, students measure only areas of rectangles with whole number length sides as they develop these understandings. They will apply this thinking in grades four and five, when rectangles involve fractional side lengths (SMP.2, 5, 6, 7; 3.OA.A.3; 3.MD.C.5, 6, 7; 4.MD.A.3). Students should understand and be able to explain why multiplying the side lengths of a rectangle yields the same measurement of area as counting the number of tiles (with the same unit length) that fill the rectangle's interior, and to explain that one length tells the number of unit squares in a row and the other length tells how many rows there are (3.MD.C.7; 4.MD.A.3).

Along with developing area concepts, upper elementary students now recognize perimeter as an attribute of plane figures. The concept of perimeter is introduced in
grade three, but confusion between the terms area and perimeter is common throughout grades three through five, a reminder that the distinction between linear and area measurement needs to be explored and emphasized at this stage of learning.

> As students find the perimeter of a 4×6 rectangle, one student offers: "I added $4+6+$ $4+6$ (pointing to each of the four sides of the rectangle in turn), and that was $10+10$, so 20 cm ." Another student reports, "I added the sides like this: $4+4=8$ and $6+6=$ $12, s o 8+12=20 \mathrm{~cm}$." A third student explains, "I added $4+6$ and that was 10 , so it's 2 $\times 10=20 \mathrm{~cm}$." The teacher displays these examples and asks the class to describe how the methods are alike and how they differ, and whether they will all work for finding the perimeter of other rectangles. In the discussion that follows, the class observes that the methods all use addition to find the perimeter, and one method uses addition and multiplication. The students agree the methods all work because the opposite sides of a rectangle have the same lengths. The teacher draws attention to this idea to highlight the linear nature of perimeter, and invites a student to outline with a colorful pen the perimeter of the rectangle under discussion.

Questions about how students can measure the length of the perimeter (add the four side lengths) versus how they can find the area of the interior of the rectangle (multiply the number of rows by the number of tiles in a row) give students a chance to deepen their understanding of how and why area and perimeter are measured differently, and are identified by different types of units. To develop genuine understanding, instruction must focus on the concepts of perimeter and area (studying the mathematics) rather than applying formulas such as $2(\boldsymbol{\ell}+\boldsymbol{\omega})$ and $\ell \times \omega)$ (answer-getting), as described by Phil Daro in the video Against Answer-getting (SERP, 2014).

The vignette in this chapter, "Santikone Builds Rectangles to Find Area," presents a multi-day lesson incorporating many of the space and measurement concepts developed in grades three through five.

In "Garden Design," a grade three performance assessment found at Inside Mathematics (The University of Texas at Austin, n.d.), students find and compare areas of rectilinear figures. The task explores the idea that figures can have different dimensions, yet contain the same area.

Fifth-grade students expand on their understanding of two-dimensional area measurement to develop concepts of volume of solid figures, with a particular focus on the volume of rectangular prisms (5.MD.C.3, 4, 5). Students need concrete experiences building with three-dimensional cubes to reach understanding of the concept and eventually to derive a formula for calculating volume (SMP.2, 4, 6, 7). When students build rectangular prisms from cubes, they find they will make layers of cubes and can recognize how each layer represents the area of the corresponding two-dimensional rectangle.

Fifth-grade students explore the ideas of volume and scaling with a focus on rectangular solids (5.MD.C.3, 4, 5). They might investigate what happens when, for example, they double the length, width, and height of a rectangular solid. They find that the volume increases not by two or by four, but by a factor of eight, since $2 \times 2 \times 2=8$. This discovery is often quite surprising to students. Before they get to the point of generalizing this phenomenon, they should think about the effects of scaling the different dimensions by different factors.

The task "Box of Clay," at Illustrative Mathematics (Illustrative Mathematics, n.d.b), (challenges students' understanding of volume and scaling, as well as whether they recognize how length x width x height can be used to calculate volume (5.MD.C.3, 4, 5).

A box 2 centimeters high, 3 centimeters wide, and 5 centimeters long can hold 40 grams of clay. A second box has twice the height, three times the width, and the same length as the first box. How many grams of clay can it hold?

Tasks such as this help students understand what happens when they scale the dimensions of a right rectangular solid (SMP.2, 5, 7; 5.MD.C.3, 4, 5). In this case, the volume is increased by a factor of six: the height is doubled, the width is tripled, and the length remains the same $(2 \times 3 \times 1)$, so the volume of the larger box is 240 grams of clay.

Exploring angles, the space between two rays that have a common endpoint, begins in grade four (4.MD.C.5, 6, 7). Students have had previous experience identifying and
counting the corners of plane figures, and often assume that an angle is that point where two line segments join. It is important that students come to understand an angle as some portion of a 360° rotation around the point where two rays meet. Fourth-grade students are expected to sketch and measure angles using a protractor. Students can make their own protractors as a means of deepening understanding of an angle as a measure of rotation around the center of a circle (4.MD.C.6,7; SMP.1, 3, 5, 7).

Snapshot: Creating Protractors

Grade 4 teacher, Mr. Flores, has noticed that some of the students still exhibit confusion about angles, often identifying the point at which two rays or line segments meet as an angle. Mr. Flores decides to engage them in building protractors to increase their ownership and understanding of the concept. After several guided steps, students will investigate methods of finding angle measures independently. Mr. Flores provides each student (or pair of students) with:

- a set of fraction circles,
- a square of cardstock (larger than the diameter of the whole fraction circle), and
- a straightedge ruler.

The teacher guides students through these steps to label a circle with angles of $0^{\circ}, 90^{\circ}$, 180° and 360° :

1) outline the whole fraction circle on the cardstock square
2) align the $1 / 2$ fraction piece within the circle; draw a line across the circle to create a diameter.
3) label one end of the diameter as 0°, and the opposite end as 180°.
4) place the right angle of the $1 / 4$ fraction piece at the origin, to find and mark 90° angle.
5) place a second $1 / 4$ fraction piece adjacent to the first (180° is already marked), and a third $1 / 4$ fraction piece, which allows the marking of 270°.

When students place the final $1 / 4$ fraction piece, the full circle is complete, and the marking 360° coincides with the 0° spot, as shown in the image above.

Students continue to explore independently with other fraction pieces (1/8, $1 / 3,1 / 12$, etc.), figuring and marking as many degree measures as the fraction pieces permit. Students are likely to discover additional measures to mark on the protractor by aligning a fraction piece alongside a previously marked angle measure (e.g., after labeling a 30° angle using the twelfths, a student may align an eighth piece beside it and discover they can mark a 75° angle, reasoning that $30^{\circ}+45^{\circ}=75^{\circ}$).

Mr. Flores allows time for the students to collaborate, explain their thinking to a partner, and make additional discoveries.

Once completed, Mr. Flores engages the class in an academic conversation to compare their results. Mr. Flores displays the vocabulary words and terms collected by listening to students' work during the lesson to support the discussion. Students share their discoveries and report how they found any measures that others may not have discovered. Students discuss the use of the protractors as a tool. Several report that they have seen commercially made protractors, and some have them at home, but they are proud of their "homemade" protractors.

Mr. Flores is satisfied that students are growing in their understanding of angle concepts and angle measures as well as gaining skill in using a protractor (4.MD.C.6,7). In subsequent lessons, students will demonstrate how they measure angles on various polygons or other available objects and justify the measurements they identify.

The growth of students' reasoning about geometric shapes across grades three to five is considerable. Along with growth of reasoning in this content area, students also encounter significant new vocabulary. Mathematics instruction should seek to support

Grade 3	Grade 4	Grade 5
Categorize shapes by attributes and recognize that different shapes may share certain attributes (3.G.A.1)	Classify shapes based on properties of their lines and angles, including symmetry, parallel and perpendicular lines (4.G.A.2, 3)	Understand that attributes found in a category of two- dimensional figures are shared by all figures in sub-categories of that category. For example, they verify that, based on properties, squares are a sub-category of rectangles (5.G.B.3).
Be familiar with several sub-categories of quadrilaterals: rhombus, rectangle, square; draw non-examples of quadrilaterals that do not fit into any of these sub- categories (3.G.A.1)	Categorize special triangles: equilateral, isosceles, right, and scalene; and special quadrilaterals: rhombus, square, rectangle, parallelogram, trapezoid (4.G.A.2)	Analyze and diagram the hierarchical relationships of properties among two- dimensional figures (5.G.B.4)

all students' language facility—including content and language development of students learning English. Graphic displays of terms and properties, choral responses, partner talk, and the use of gestures can be helpful. Manipulative tools such as two- or threedimensional geometric figures, straws or other straight objects that can be used to construct and compare geometric figures, and technological tools that allow students to illustrate figures with specified properties can all support students as they make sense of the vocabulary involved.

Development of Shape Concepts

The Understanding Language/Stanford Center for Assessment, Learning, and Equity (SCALE) project at Stanford University (Zweirs et al., 2017) describes eight specific Math Language Routines designed to support and develop students' academic language. These include student-centered routines that are readily implemented in the classroom; one example is "Convince Yourself, a Friend, a Skeptic." This routine calls for students to justify their mathematical argument as a way to

1. satisfy themselves;
2. convince a friend (who asks questions and encourages further verbal or written explanation, or perhaps an illustration); or
3. convince a student skeptic, who will challenge and offer counter-arguments to help refine the argument.

Presenting multiple examples of regular and irregular figures in various sizes and orientations can help students recognize the similarities and differences among properties of geometric figures. Note that "regular" is a word that has one meaning in everyday usage and a distinct, specific meaning as it applies to geometric figures. Multimeaning terms often present a challenge to English learners and others with learning differences; teachers can provide additional supports and/or time. Thoughtful attention to student partners/groups, non-verbal cues, or verbal prompts (e.g., "You can tell this shape is regular because ...") can help a student develop the concept as well as the pertinent academic language.

- Third-grade students categorize shapes by attributes and recognize that different shapes may share certain attributes. Vocabulary includes: rhombus, rectangle, square, and quadrilateral.
- Fourth-grade students gain familiarity with additional attributes and shape names, including symmetry, parallel and perpendicular lines, parallelograms, and trapezoids. They identify angles and specific types of triangles: acute, obtuse, right, isosceles, equilateral and scalene.
- In fifth grade, a greater degree of analysis is demanded as students describe and diagram the hierarchical relationships of properties among two-dimensional figures. For example, they verify that, based on properties, squares are a subcategory of rectangles.

Research on the development of geometric thought describes a progression in the elementary grades from simple recognition of how a shape looks through analysis, and
informal deduction. Progress is sequential; a child must work through each level to move to the next higher stage, and experiences rather than age determine when a child is ready to advance (Van de Walle et al., 2014, 246-361; Breyfogle and Lynch, 2010). Consequently, instruction at any grade must account for students who are progressing at various rates. Activities that have multiple entry points, call for hands-on, active learning, and invite student discourse enable all students to contribute and to advance their thinking. When justification of conclusions is an expectation in a classroom, students have opportunity to evaluate results and to recognize and to challenge claims that are not sufficiently supported by mathematical reasoning (SMP.3). The vignette, Polygon Properties Puzzles, in Chapter 10, Technology and Distance Learning in the Teaching of Mathematics, offers a glimpse into a classroom as grade four students apply mathematical practices (SMP.1, 3, 5, 6, 7) and show understanding of the properties of various polygons as they illustrate polygons and defend their reasoning.

Overgeneralization of geometric ideas often occurs in these grades, as students attempt to integrate the new concepts with previous knowledge. For example, students may come to believe that all rectangles have two longer and two shorter pairs of parallel sides, and thus that squares are not rectangles. Or, that a triangle that is "tilted" is not a triangle (e.g., triangle a, below). Instruction must include examples of geometric figures in many orientations and with unusual dimensions (e.g., triangle b , trapezoid c , below).

Students need repeated opportunities to examine and discuss examples and nonexamples to strengthen a concept.

Possible tasks:

- My friend said that this (shape above) was not a square: Is my friend right? Why/why not?
- Draw an example of a quadrilateral that is a parallelogram and another quadrilateral that is not a parallelogram. Explain why the second one is not a parallelogram.
- Cut two paper squares diagonally to create four congruent right triangles. Then, using the 4 triangles, how many different shapes can you make? We will use the rule that touching sides must be the same length. Draw each shape you made, and be ready to share and explain your thinking.
- On a page, using a straight edge, draw five lines, no two of which may be parallel. Convince your partner that your drawing matches the requirements (Sullivan and Lilburn, 2002).
- I drew a shape with four sides but none of the four sides were the same length. Draw what my shape might have looked like (Sullivan and Lilburn, 2002, 81). After drawing, plan to compare your shape with your partner's.
- A shape is made of two smaller shapes that are the same shape and the same size and that are not rectangles. What might the larger shape look like (Sullivan and Lilburn, 2002, 83)? Convince your group members that your shape fits the requirements. How many different shapes did your group find? How can we know if others are possible?

When fifth-grade students organize two-dimensional shapes in a hierarchical structure, they are demonstrating the informal deduction stage of growth. At higher grade levels, students move to formal deduction and rigor.

Vignette: Santikone Builds Rectangles to Find Area

Grades: 3, 4
Content Connections: 2, Exploring Changing Quantities; 4, Discovering Shape and Space

Drivers of Investigation: 1, Make Sense of the World; 3, Impact the Future
Concepts: Measurement, area, perimeter, multiplication

SMPs: SMP.2, 3, 5, 6
Background:
Santikone's third-grade class is building understanding of the operations of multiplication and division and concepts of perimeter and area. Their teacher plans a two- to three-day lesson, knowing that these are pivotal concepts and that integrating multiple concepts in a meaningful context is more effective than addressing a single concept in isolation. Santikone, like many of their classmates, responds with excitement, is actively engaged, and retains learning well when their classroom tasks involve using math tools and allow students to approach problems in a variety of ways. For Santikone, working with an instructional aide is an additional tool to support their full participation in these activities.

The teacher has chosen a task that addresses third grade measurement and area content while simultaneously calling on skills of multiplication and division. To conclude the lesson, each student will compose a paragraph explaining their reasoning.

Classroom Narrative:
Santikone and their instructional aide listen as the teacher, Ms. B, describes what the class will be doing.
"Our challenge is to find all the ways to make a rectangle with a loop of string that is 36 -inches long. Then we will make some decisions about what these rectangles could be used for, and which would be the best choices."

Ms. B asks the students to imagine what that would look like, and what part of the rectangles the string would represent. The teacher draws a rectangle on the board, and tells students to think about the line as if it were the string. After a few seconds, Ms. B asks children to talk to partners about what part of the rectangle the string represents. As the students discuss with their partners, Santikone and their instructional aide discuss a few ideas in preparation for the whole-class discussion: it's the outside of the rectangle; it's the edge; it's like a fence or maybe a wall. The aide nudges Santikone to record their thinking and rehearse their contribution to the upcoming discussion.

Ms. B opens the floor to the whole class and listens as children talk, and records their ideas, including Santikone's. The list includes edge, side, outside, fence, area, perimeter, line. In a short discussion, in which Ms. B reminds the students of their previous lesson about what they called the "outside" of a polygon, the class agrees that "perimeter" is the word that fits best, and that the class will be making rectangles with a perimeter of 36 inches (SMP.3, 6; 3.MD.D.8). Ms. B notes that the word "area" appeared in the list, and asks students to recall what they have previously learned about area. Ms. B reminds the class that they may find it useful to refer to the math wall (a large space on the wall where the class has posted definitions, drawings, and counter-examples of the shapes they have studied so far this year) in the classroom. During the lesson, Santikone's aide supports their shifts of attention to the word "area," to the math wall, and so on.

After a brief discussion, Ms. B tells the students that after they explore, finding rectangles with a perimeter of 36 inches, they will talk more about area.

Ms. B continues, posting directions:

1. Arrange the string to form rectangles along the grid lines on your paper.
2. Draw each rectangle on the grid paper, recording length and width in inches along the sides (SMP.2, 5, 6; 3.MD.B.4).
3. Talk with your group about how you know you have found all the possible rectangles (SMP.3, 6; 3.G.1).
4. Bring your ideas to the class when we gather to share.

Ms. B supplies each group with a large sheet of one-inch grid paper, rulers, and a string loop. Children gather paper, pencils, and markers they will use to record the rectangles they make and move to their work spaces.

Independent Student Investigations:
Santikone wonders whether it is possible to make many different rectangles (how many?) with the same string, and whether they will all have the same area. Upon joining their partners, Santikone immediately picks up the string and tries to make a rectangle on the grid paper. Santikone's aide joins the group and supports their interactions by asking peers to repeat what others have said, and making sure that Santikone both
listens and is heard. When Santikone tries to form the corners and cannot hold the string still, a teammate volunteers to help. The group decides on a plan: each person will make one rectangle with a helper, and then they will pass the string to the next person so each person gets to build some of the rectangles. Another team member will draw the rectangle and record its dimensions on the grid paper.

Santikone tries again to form a rectangle that is four inches wide. A partner helps by holding the string still at two corners while Santikone stretches the string to find that it makes a length of 14 inches. The team works together to draw this first rectangle, and they write down the dimensions.

Work proceeds until the group is satisfied they have found all the possible rectangles. After the students have worked to find all the rectangles, Ms. B calls for attention. The teacher tells the class they get to continue the investigation, and directs them:

- Work with your group to find the area of each rectangle you found; record the area for each rectangle on your drawing (SMP.2,6; 3.MD.C.5, 6).
- Talk with your group about what each rectangle could represent in the world and be ready to share with the class (SMP.2,3; ELD P 10,11,12).

Ms. B circulates as groups find the areas of the rectangles, noting strategies students use. Some count single unit squares, others count how many rows there are in the figure (e.g., four square inches in each row), and count by fours to find the total number of square inches. A few students make multiplication connections, such as "Well, there are four in each row and there are 14 rows, so isn't that like a multiplication problem?" Ms. B hears a student say the area is like an array. Some students discuss whether they should count the 9×9 square they have drawn; they are debating whether a square is also a rectangle. Several students express surprise that there were so many rectangles possible and they all have the same perimeter, but not the same area. Ms. B reminds students to think and talk to each other about what each shape of rectangle might represent in the real world, and to get ready to share their discoveries and ideas. Ms. B circulates among the students, encouraging partners to practice out loud with each other what they will say to the class. Particularly attentive to language
development, Ms. B pauses a few minutes to support all students, including English learners, in their efforts to express their thinking. During this final group work period, the teacher identifies a few groups' posters that represent different approaches and/or organizational methods; Ms B will invite students to present these samples to initiate the class discussion.

Team Presentation Session:

Santikone is excited that Ms. B asked their group to share their poster and how they found the areas of their rectangles. The team members explain how they found each rectangle and report the areas, which they found by counting by $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$, up to 9 s (the lengths of the rows they made).

Another team shares their thinking; they figured out they could find areas by multiplying. A rectangle of width 1 inch had a length of 17 , and there were 17 square inches in that area. They noticed that $1 \times 17=17$, and that meant they could multiply to find the area.

A lively discussion develops regarding whether the 9×9-inch square should be included in the list of rectangles, and Ms. B welcomes this discussion of important grade level mathematics. Aware that students often need extra time to develop understanding of a square as a special example of the category of rectangles, the teacher asks teams to review their knowledge of what makes a rectangle, a topic they had discussed previously. The points included the following:

- Rectangles have four sides.
- Rectangles include square corners.
- Rectangles have two sides across from each other that are the same lengths.

Casey agrees, but says to include that rectangles have to have two long sides and two short sides. Sumira challenges: "Why do there have to be long sides and short sides? I thought when we talked before we said all the sides could be the same, like in a square." Santikone walks to the math wall, and reviews the pictures and descriptions of "rectangle" and "square" posted. Santikone comes back, and excitedly tells Sumira they agree. With a few more minutes of discussion, the class comes to consensus and includes the 9×9-inch square rectangle in the list of nine possible rectangles with whole number length sides, and a perimeter of 36 .

Ms. B focuses attention on the questions of which rectangle has the greatest area, and which of the rectangles would be most useful at school, at home, or in the community, and why.

Students talk a few moments about whether a "long, skinny" or a "shorter, wider" rectangle is better. When the class discussion resumes, Santikone comments that the 1 $x 17$ rectangle is so long and skinny it would not be useful for many things, and wider ones are probably better for most things. Another student says that some of the rectangles look like they are the shape of a book or a door. Others describe how various rectangles could be the shape of a playground, a pool, a garden, or a sandbox. A number of students claim the rectangles that have the largest areas (the 8×10 rectangle and the 9×9 square rectangle), would be the "best" for most things.

Lesson Extension and Conclusion:

Ms. B introduces the plan for students to write in their journals: they will explain why there are so many different rectangles that have the same perimeter, describe how they could use one of the rectangles to represent something real (dog run, pool, garden, etc.), and explain why they made that choice. Ms. B attends to the linguistically diverse students in the class and reminds them of the sentence frames they have found helpful in past lessons. Ms. B invites them to practice by sharing their responses with a partner and reading their written work aloud when they are finished.

Santikone, having already decided that a pool would be the perfect way to use a rectangle, cheerfully explains this choice and illustrates a sunny day, blue sky, and a "long, medium-skinny" pool in the journal.

Critical Areas of Instructional Focus for Grades Three Through Five

The mathematics content across grades TK-12 progresses in accordance with the CA CCSSM principles of focus, coherence, and rigor. The Big Ideas network maps on the following pages highlight important and foundational content, shown as nodes, for each grade level. As students explore and investigate with the Big Ideas, they will likely encounter many different content standards and note the connections between them. In the network maps, the size of a node relates to the number of connections it has with other Big Ideas. The connections between Big Ideas are made when the two connected big ideas contain one or more of the same standards.

The colors in the network nodes correspond to the colors used in the Content Connections, Big Ideas, and Standards tables, which indicate in more detail how grade level content standards can be addressed in the context of the CCs described in this Framework.

Figure 6.13. Grade 3 Big Ideas

Link to long description

Figure 6.14: Grade 3 Content Connections, Big Ideas, and Standards

Content Connection	Big Idea	Grade 3 Standards
Communicating Stories with Data	Represent Multivariable Data	MD.3, MD.4, MD.1, MD.2, NBT.1: Collect data and organize data sets, including measurement data; read and create bar graphs and pictographs to scale. Consider data sets that include three or more categories (multivariable data) for example, when I interact with my puppy, I either call her name, pet her, or give her a treat.

Content Connection	Big Idea	Grade 3 Standards
Communicating Stories with Data Taking Wholes Apart, Putting Parts Together Discovering Shape and Space	Fractions of Shape \& Time	MD.1, NF.1, NF.2, NF.3, G.2: Collect data by time of day, show time using a data visualization. Think about fractions of time and of shape and space, expressing the base unit as a unit fraction of the whole.
Communicating Stories with Data	Measuring	MD.2, MD.4, NBT.1: Measure volume and mass, incorporating linear measures to draw and represent objects in two-dimensional space. Compare the measured objects, using line plots to display measurement data. Use rounding where appropriate.
Exploring Changing Quantities	Addition and Subtraction Patterns	NBT.2, , OA.8, OA.9, MD.1: Add and subtract within 1000 - Using student generated strategies and models, such as base 10 blocks. e.g., use expanded notation to illustrate place value and justify results. Investigate patterns in addition and multiplication tables, and use operations and color coding to generalize and justify findings.
Exploring Changing Quantities	Number Flexibility to 100	OA.1, OA.2, OA.3, OA.4, OA.5, OA.6, OA.7, OA.8, NBT.3, MD.7, NBT.1: Multiply and divide within 100 and justify answers using arrays and student generated visual representations. Encourage number sense and number flexibility - not "blind" memorization of number facts. Use estimation and rounding in number problems.
Taking Wholes Apart, Putting Parts Together	Square Tiles	MD.5, MD.6, MD.7, OA.7, NF.1: Use square tiles to measure the area of shapes, finding an area of n squared units, and learn that one square represents $1 /$ nth of the total area.
Taking Wholes Apart, Putting Parts Together	Fractions as Relationships	NF.1, NF.3: Know that a fraction is a relationship between numerators and denominators - and it is important to consider the relationship in context. Understand why $1 / 2=2 / 4=3 / 6$.

Content Connection	Big Idea	Grade 3 Standards
Taking Wholes Apart, Putting Parts Together 	Unit Fraction Models	NF.2, NF.3, MD.1: Compare unit fractions using different visual models including linear models (e.g., number lines, tape measures, time, and clocks) and area models (e.g., shape diagrams encourage student jiscovering Shape and Space
Discovering Shape and Space with visual models).		

Figure 6.15: Grade 4 Big Ideas

Link to long description

Figure 6.16: Grade 4 Content Connections, Big Ideas, and Standards

Content Connection	Big Idea	Grade 4 Standards
Communicating Stories with Data	Measuring \& Plotting	MD.1, MD.4, NF.1, NF.2: Collect data consisting of distance, intervals of time, volume, mass, or money. Read, interpret, and create line plots that communicate data stories where the line plot measurements consist of fractional units of measure. For example, create a line plot showing classroom or home objects measured to the nearest quarter inch.
Communicating Stories with Data	Rectangle Investigations	MD1, MD2, MD3, MD5, MD6: Investigate rectangles in the world, measuring lengths and angles, collecting the data, and displaying it using data visualizations.
Exploring Changing Quantities	 Shape Patterns	OA.5, OA.1, OA.2, NBT.4: Generalize number and shape patterns that follow a given rule. Communicate understanding of how the pattern changes in words, symbols, and diagrams - working with multi-digit numbers.
Exploring Changing Quantities	Factors \& Area Models	OA.1, OA.2, OA.4, NBT.5, NBT.6: Break numbers inside of 100 into factors. Illustrate whole number multiplication and division calculations as area models and rectangular arrays that illustrate factors.
Exploring Changing Quantities	Multi-Digit Numbers	NBT.1, NBT.2, NBT 3, NBT.4, OA.1: Read and write multidigit whole numbers in expanded form and express each number component of the expanded form as a multiple of a power of ten.
Taking Wholes Apart, Putting Parts Together	Fraction Flexibility	NF.3, NF.1, NF.4, NF.5, OA.1: Understand that addition and subtraction of fractions as joining and separating parts that are referring to the same whole. Decompose fractions and mixed numbers into unit fractions and whole numbers, and express mixed numbers as a sum of unit fractions.
Taking Wholes Apart, Putting Parts Together	Visual Fraction Models	NF.2, NF.1, NF.3, NF.5, NF.6, NF.7: Use different ways of seeing and visualizing fractions to compare fractions using student generated visual fraction models. Use >, < and = to compare fraction size, through linear and area models, and determine whether fractions are greater or less than benchmark numbers, such as $1 / 2$ and 1 .

Content Connection	Big Idea	Grade 4 Standards
Taking Wholes Apart, Putting Parts Together Discovering Shape and Space	Circles, Fractions \& Decimals	NF.5, NF.6, NF.7, OA.1. MD2, MD5, MD7: Understand, compare, and visualize fractions expressed as decimals. Recognize fractions with denominators of 10 and 100, e.g., 25 cents can be written as 0.25 or $25 / 100$. Connect a circle fraction model to the clock face. Example 3/10 + 4/100 = $30 / 100+4 / 100=34 / 100$
Discovering Shape and Space	Shapes \& Symmetries	MD.5, MD.6, MD.7, G.1, G.2, G.3, NBT.3, NBT.4, Draw and identify shapes, looking at the relationships between rays, lines, and angles. Explore symmetry through folding activities.
Discovering Shape and Space	Connected Problem Solving	OA.3, MD.1, MD.2, OA2, MD.3, NBT. 3 place value, NBT.4, NBT.5, NBT.6, OA.2, OA.3, G.3: Solve problems with perimeter, area, volume, distance, and symmetry, using operations and measurement.

Figure 6.17: Grade 5 Big Ideas

2987 Figure 6.18: Grade 5 Content Connections, Big Ideas, and Standards

Content Connection	Big Idea	Grade 5 Standards
Communicating Stories with Data	Plotting Patterns	G.1, G.2, OA.3: MD.2, NF.7: Students generate and analyze patterns, plotting them on a line plot or coordinate plane, and use their graph to tell a story about the data. Some situations should include fraction and decimal measurements, such as a plant growing.

Content Connection	Big Idea	Grade 5 Standards
Communicating Stories with Data Exploring Changing Quantities Discovering Shape \& Space	Telling a Data Story	G.1, G.2, OA.3: Understand a situation, graph the data to show patterns and relationships, and to help communicate the meaning of a real-world event.
Exploring Changing Quantities	Factors \& Groups	OA.1, OA.2, MD.4, MD.5: Students use grouping symbols to express changing quantities and understand that a factor can represent the number of groups of the quantity.
Exploring Changing Quantities	Modeling	NBT.3, NBT.5, NBT.7, NF.1, NF.2, NF.3, NF.4, NF.5, NF.6, NF.7, MD.4, MD.5, OA.3: Set up a model and use whole, fraction, and decimal numbers and operations to solve a problem. Use concrete models and drawings and justify results.
Exploring Changing Quantities Taking Wholes Apart, Putting Parts Together	Fraction connections	NF.1, NF.2, NF.3, NF.4, NF.5, NF.7, MD.2, NBT.3: Make and understand visual models, to show the effect of operations on fractions. Construct line plots from real data that include fractions of units.
Taking Wholes Apart, Putting Parts Together	Seeing Division	MD.3, MD.4, MD.5, NBT.4, NBT.6, NBT.7: Solve real problems that involve volume, area, and division, setting up models and creating visual representations. Some problems should include decimal numbers. Use rounding and estimation to check accuracy and justify results.
Taking Wholes Apart, Putting Parts Together	Powers and Place Value	NBT.3, NBT.2, NBT.1, OA.1, OA.2: Use whole number exponents to represent powers of 10 . Use expanded notation to write decimal numbers to the thousandths place and connect decimal notation to fractional representations, where the denominator can be expressed in powers of 10.

Content Connection	Big Idea	Grade 5 Standards
Discovering Shape and Space	Layers of Cubes	MD.5, MD.4, MD.3, OA.1, MD.1: Students recognize volume as an attribute of three-dimensional space. They understand that a 1-unit by 1-unit by 1-unit cube is the standard unit for measuring volume. They decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes.
Discovering Shape \& Space 	Shapes on a Plane	G.1, G.2, G.3, G4, OA.3, NF.4, NF.5, NF.6: Graph 2-D shapes on a coordinate plane, notice and wonder about the Eroperties of shapes, parallel and perpendicular lines, right angles, and equal length sides. Use tables to organize the Changing Quantities
chardinates of the vertices of the figures and study the		
changing quantities of the coordinates.		

Transition from Transitional Kindergarten Through Grade Five to Grades Six Through Eight

Similar to this chapter, Chapter 7: Mathematics: Investigating and Connecting, Grades Six Through Eight is organized around the same four Content Connections:

- (CC1) Communicating Stories with Data
- (CC2) Exploring Changing Quantities
- (CC3) Taking Wholes Apart, Putting Parts Together
- (CC4) Discovering Shape and Space

The preparation in younger grades is essential for students' continued development in mathematics in every area of instruction in grades six through eight.

How does learning in transitional kindergarten through grade five lead to success in grades six through eight when students communicate stories told by data?

In the transitional kindergarten through grade five years, students gather, represent, and interpret data. Engagement and understanding are enhanced when the question under investigation is of interest and relevance to the students. The ability to analyze data developed in the elementary years is essential to students in grades six through eight as they focus on the importance of data as the source of most mathematical situations that students will encounter in their lives.

How does learning in grades transitional kindergarten through grade five lead to success in grades six through eight when students are exploring changing quantities?

Students in grades six through eight extend their understanding of number types to the set of rational numbers, which includes whole numbers, integers, fractions and decimals. They make connections among ratios, rates, and percentages, and use proportional reasoning to solve authentic problems. Whole number foundations are established in the primary grades, and fraction and decimal ideas are key elements of grades three through five. In grades six through eight, students deepen their understanding of fractions, especially division of fractions. When this concept is
introduced with meaning in grade five, it enables students to succeed in later work.

Students in grades six through eight work extensively with expressions and equations, and solve multi-step problems. This new content relies heavily on foundations developed in the youngest grades. Understanding of equality is evident when a kindergartener compares quantities of objects; a first or second grade student expresses a statement of equality with objects, verbally, or symbolically; a third, fourth, or fifth grade student finds and recognizes equivalent fractions or explains equivalence between a decimal and fractional value.

How does learning in grades transitional kindergarten through grade five lead to success in grades six through eight when students are taking numbers apart, putting parts together, representing thinking, and using strategies?

Throughout transitional kindergarten through grade five, emphasis is placed on students using objects and drawings to illustrate their ways of solving problems, describing their strategies verbally, and developing written methods that make sense within the context of a particular problem. Connections among various representations are an important feature of mathematical discourse, whether this occurs in a small group or a whole class setting.

In grades six through eight, students build their ability and inclination to see connections between representations, and to base strategies on different representations in order to gain insight into problem situations. Their efforts to make connections in younger grades will support students as they build representations for, understanding of, and facility in working with ratios, proportions, and percents, and for the new category of rational number.

How does learning in grades transitional kindergarten through grade five lead to success in grades six through eight when students are discovering shape and space?

Developing mathematical tools to explore and understand the physical world should
continue to motivate explorations in shape and space. As in other areas, maintaining connection to concrete situations and authentic questions is crucial.

In transitional kindergarten through grade five, students use basic shapes and spatial reasoning to model objects in their environment to establish many foundational notions of two- and three-dimensional geometry. They develop concepts of area perimeter, angle measure, and volume. Shape and space work in grades six through eight is largely about connecting these notions to each other, to students' lives, and to other areas of mathematics.

Developing mathematics for true understanding in transitional kindergarten through grade five is pivotal. Students who experience meaningful mathematics that makes sense to them during the elementary grades will be well-prepared to increase their mathematical understanding as they advance through middle school and high school.

Conclusion

This chapter envisions investigating and connecting the big ideas of mathematics in transitional kindergarten through grade five as a vibrant, interactive, student-centered endeavor. In an environment rich with opportunities for discourse and meaningful mathematics activities, curiosity and reasoning skills are nourished, and both teachers and students see themselves as thinkers and doers of mathematics. Careful discussion of mathematical ideas supports all learners, particularly English learners, as they acquire the language of mathematics. It is important to note that English learner students need additional support to develop the language, both to comprehend content and to express their ideas. Children experience enormous growth in maturity, reasoning, and conceptual understanding in the span of years from transitional kindergarten through fifth grade. Students who enter grade six viewing themselves as mathematically capable and who have gained an understanding of elementary mathematics are positioned for success in the middle school years. They will be empowered to make choices that will affect all their future mathematics, throughout their school years and beyond.

Long Descriptions for Chapter 6

Figure 6.1: Content Connections, Mathematical Practices and Drivers of Investigation Three Drivers of Investigation (DIs) provide the "why" of learning mathematics: Making Sense of the World (Understand and Explain); Predicting What Could Happen (Predict); Impacting the Future (Affect); The DIs overlay and pair with four categories of Content Connections (CCs), which provide the "how and what" mathematics (CA-CCSSM) is to be learned in an activity: Communicating stories with data; Exploring changing quantities; Taking wholes apart, putting parts together; Discovering shape and space. The DIs work with the Standards for Mathematical Practice to propel the learning of the ideas and actions framed in the CCs in ways that are coherent, focused, and rigorous. The Standards for Mathematical Practice are: Make sense of problems and persevere in solving them; Reason abstractly and quantitatively; Construct viable arguments and critique the reasoning of others; Model with mathematics; Use appropriate tools strategically; Attend to precision; Look for and make use of structure; Look for and express regularity in repeated reasoning. Return to graphic.

Figure 6.3: Transitional Kindergarten Big Ideas
The graphic illustrates the connections and relationships of some transitionalkindergarten mathematics concepts. Direct connections include:

- Look for Patterns directly connects to: Create Patterns, Count to 10, Measure \& Order, See \& Use Shapes, Make \& Measure Shapes
- Make \& Measure Shapes directly connects to: Look for Patterns, Create Patterns, Measure \& Order, Shapes in Space, See \& Use Shapes
- See \& Use Shapes directly connects to: Make \& Measure Shapes, Look for Patterns, Measure \& Order, Create Patterns, Count to 10, Shapes in Space
- Shapes in Space directly connects to: See \& Use Shapes, Make \& Measure Shapes, Measure \& Order, Create Patterns, Count to 10
- Count to 10 directly connects to: Shapes in Space, See \& Use Shapes, Measure \& Order, Look for Patterns
- Create Patterns directly connects to: Look for Patterns, Make \& Measure Shapes, See \& Use Shapes, Measure \& Order, Shapes in Space
- Measure \& Order directly connects to: Look for Patterns, Make \& Measure Shapes, See \& Use Shapes, Shapes in Space, Count to 10, Create Patterns. Return to graphic.

Figure 6.5: Kindergarten Big Ideas
The graphic illustrates the connections and relationships of some kindergarten mathematics concepts. Direct connections include:

- How Many directly connects to: Being flexible within 10, Shapes in the World, Sort and Describe Data, Bigger or Equal, Place and Position of Numbers
- Model with Numbers directly connects to: Being flexible within 10, Sort and Describe Data, Place and Position of Numbers
- Being Flexible within 10 directly connects to: Model with Numbers, How Many, Making Shapes from Parts, Shapes in the World
- Shapes in the World directly connects to: Being flexible within 10, How Many, Sort and Describe Data, Bigger or Equal, Making Shapes from Parts
- Making Shapes from Parts directly connects to: Shapes in the World, Being flexible within 10, Sort and Describe Data, Bigger or Equal
- Bigger or Equal directly connects to: Making Shapes from Parts, Shapes in the World, Sort and Describe Data, How Many
- Place and Position of Numbers directly connects to: How Many, Model with Numbers, Sort and Describe Data
- Sort and Describe Data directly connects to: How Many, Model with Numbers, Shapes in the World, Making Shapes from Parts, Bigger or Equal, Place and Position of Numbers. Return to graphic.

Figure 6.7: Grade 1 Big Ideas
The graphic illustrates the connections and relationships of some first-grade mathematics concepts. Direct connections include:

- Clocks \& Time directly connects to: Equal Parts Inside Shapes, Reasoning About Equality, Make Sense of Data, Tens \& Ones
- Equal Expressions directly connects to: Reasoning About Equality, Make Sense of Data, Tens \& Ones, Measuring with Objects
- Reasoning About Equality directly connects to: Equal Expressions, Clocks \& Time, Make Sense of Data, Tens \& Ones
- Tens \& Ones directly connects to: Reasoning About Equality, Make Sense of Data, Equal Expressions, Clocks \& Time
- Measuring with Objects directly connects to: Equal Expressions, Make Sense of Data
- Equal Parts Inside Shapes directly connects to: Clocks \& Time, Make Sense of Data
- Make Sense of Data directly connects to: Reasoning About Equality, Tens \& Ones, Measuring with Objects, Clocks \& Time, Equal Expressions, Equal Parts Inside Shapes. Return to graphic.

Figure 6.9: Grade 2 Big Ideas
The graphic illustrates the connections and relationships of some second-grade mathematics concepts. Direct connections include:

- Dollars \& Cents directly connects to: Problems Solving with Measure, Skip Counting to 100, Number Strategies, Represent Data
- Problems Solving with Measure directly connects to: Skip Counting to 100, Number Strategies, Represent Data, Measure and Compare Objects, Dollars \& Cents
- Skip Counting to 100 directly connects to: Number Strategies, Seeing Fractions in Shapes, Squares in an Array, Represent Data, Dollars \& Cents, Problems Solving with Measure
- Number Strategies directly connects to: Skip Counting to 100, Problems Solving with Measure, Dollars \& Cents, Represent Data
- Seeing Fractions in Shapes directly connects to: Skip Counting to 100, Represent Data, Squares in an Array
- Squares in an Array directly connects to: Seeing Fractions in Shapes, Skip Counting to 100, Represent Data, Measure and Compare Objects
- Measure and Compare Objects directly connects to: Squares in an Array, Represent Data, Problems Solving with Measure
- Represent Data directly connects to: Measure and Compare Objects, Dollar \& Cents, Problems Solving with Measure, Skip Counting to 100, Number Strategies, Seeing Fractions in Shapes, Squares in an Array. Return to graphic.

Figure 6.11: Content Connections, Mathematical Practices and Drivers of Investigation Three Drivers of Investigation (DIs) provide the "why" of learning mathematics: Making Sense of the World (Understand and Explain); Predicting What Could Happen (Predict); Impacting the Future (Affect); The DIs overlay and pair with four categories of Content Connections (CCs), which provide the "how and what" mathematics (CA-CCSSM) is to be learned in an activity: Communicating stories with data; Exploring changing quantities; Taking wholes apart, putting parts together; Discovering shape and space. The Dls work with the Standards for Mathematical Practice to propel the learning of the
ideas and actions framed in the CCs in ways that are coherent, focused, and rigorous. The Standards for Mathematical Practice are: Make sense of problems and persevere in solving them; Reason abstractly and quantitatively; Construct viable arguments and critique the reasoning of others; Model with mathematics; Use appropriate tools strategically; Attend to precision; Look for and make use of structure; Look for and express regularity in repeated reasoning. Return to graphic.

Figure 6.13. Grade 3 Big Ideas
The graphic illustrates the connections and relationships of some third-grade mathematics concepts. Direct connections include:

- Fractions of Shape \& Time directly connects to: Square Tiles, Fractions as Relationships, Unit Fractions Models, Represent Multivariable Data
- Measuring directly connects to: Number Flexibility to 100, Analyze Quadrilaterals, Represent Multivariable Data
- Addition and Subtraction Patterns directly connects to: Number Flexibility to 100, Unit Fraction Models, Analyze Quadrilaterals, Represent Multivariable Data
- Square Tiles directly connects to: Fractions as Relationships, Number Flexibility to 100, Fractions of Shape \& Time
- Fractions as Relationships directly connects to: Square Tiles, Fractions of Shape \& Time, Unit Fraction Models
- Unit Fraction Models directly connects to: Fractions as Relationships, Addition and Subtraction Patterns, Fractions of Shape \& Time, Represent Multivariable Data
- Analyze Quadrilaterals directly connects to: Number Flexibility to 100, Addition and Subtraction Patterns, Measuring
- Represent Multivariable Data directly connects to: Unit Fraction Models, Number Flexibility to 100, Addition and Subtraction Patterns, Measuring, Fractions of Shape \& Time
- Number Flexibility to 100 directly connects to: Square Tiles, Analyze Quadrilaterals, Represent Multivariable Data, Measuring, Addition and Subtraction Patterns. Return to graphic.

Figure 6.15: Grade 4 Big Ideas

The graphic illustrates the connections and relationships of some fourth-grade mathematics concepts. Direct connections include:

- Number \& Shape Patterns directly connects to: Shapes \& Symmetries, Connected Problem Solving, Circles Fractions \& Decimals, Factors \& Area Models, Fraction Flexibility, Multi-Digit Numbers
- Shapes \& Symmetries directly connects to: Connected Problem Solving, Circles Fractions \& Decimals, Multi-Digit Numbers, Number \& Shape Patterns
- Rectangle Investigations directly connects to: Connected Problem Solving, Measuring \& Plotting, Circles Fractions \& Decimals
- Connected Problem Solving directly connects to: Rectangle Investigations, Shapes \& Symmetries, Number \& Shapes Patterns, Multi-Digit Numbers, Circles Fractions \& Decimals, Factors \& Area Models, Measuring \& Plotting
- Measuring \& Plotting directly connects to: Connected Problem Solving, Rectangle Investigations, Visual Fraction Models
- Visual Fraction Models directly connects to: Measuring \& Plotting, Circles Fractions \& Decimals, Fraction Flexibility
- Factors \& Area Models directly connects to: Connected Problem Solving, Circles Fractions \& Decimals, Number \& Shape Patterns, Multi-Digit Numbers, Fraction Flexibility
- Fraction Flexibility directly connects to: Factors \& Area Models, Circles Fractions \& Decimals, Number \& Shape Patterns, Multi-Digit Numbers
- Multi-Digit Numbers directly connects to: Number \& Shape Patterns, Shapes \& Symmetries, Connected Problem Solving, Circles Fractions \& Decimals, Factors \& Area Models, Fraction Flexibility
- Circles Fractions \& Decimals directly connects to: Multi-Digit Numbers, Number \& Shape Patterns, Shapes \& Symmetries, Rectangle Investigations, Connected Problem Solving, Visual Fraction Models, Factors \& Area Models, Fraction Flexibility. Return to graphic.

Figure 6.17: Grade 5 Big Ideas

The graphic illustrates the connections and relationships of some fifth-grade mathematics concepts. Direct connections include:

- Factors \& Groups directly connects to: Powers \& Place Values, Layers of Cubes, Modeling, Seeing Division
- Shapes on a Plane directly connects to: Telling a Data Story, Modeling, Plotting Patterns
- Powers \& Place Value directly connects to: Layers of Cubes, Fraction Connections, Modeling, Factors \& Groups
- Layers of Cubes directly connects to: Powers \& Place Value, Factors \& Groups, Modeling, Seeing Division
- Telling a Data Story directly connects to: Shapes on a Plane, Modeling, Plotting Patterns
- Seeing Division directly connects to: Layers of Cubes, Modeling, Factors \& Groups
- Plotting Patterns directly connects to: Telling a Data Story, Modeling, Fraction Connections, Shapes on a Plane
- Fraction Connections directly connects to: Powers \& Place Value, Modeling, Plotting Patterns
- Modeling directly connects to: Plotting Patterns, Factors \& Groups, Shapes on a Plane, Powers \& Place Value, Fraction Connections, Layers of Cubes, Telling a Data Story, Seeing Division. Return to graphic.

California Department of Education, March 2022

[^0]: ${ }^{1}$ Unlike kindergarten and beyond, transitional kindergarten does not have gradespecific content standards. Therefore, the guidelines in this chapter draw from the California Preschool Learning Foundations (for children at age 60 months).

[^1]: ${ }^{2}$ Teachers should use their professional judgement in considering what attributes to measure, practicing particular sensitivity to any physical attributes.

[^2]: ${ }^{3}$ Pig is a folk jeopardy dice game described by John Scarne in 1945, and was an ancestor of the modern game Pass the Pigs® (originally called PigMania®); Scarne, John (1945). Scarne on Dice. Harrisburg, Pennsylvania: Military Service Publishing Co.

