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Introduction: Mathematical Practices 35 

Proficient students expect mathematics to make sense. They take an active stance in 36 

solving mathematical problems. When faced with a non-routine problem, they have the 37 

courage to plunge in and try something, and they have the procedural and conceptual 38 
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tools to carry through. They are experimenters and inventors, and can adapt known 39 

strategies to new problems. They think strategically (authors of the CA CCSSM; quoted 40 

in Swan and Burkhardt, 2014). 41 

California schools must prepare students to be such powerful users of mathematics to 42 

understand and affect their worlds, in whatever life path they embark upon. This charge 43 

is built on the California Common Core State Standards for Mathematics (CA CCSSM), 44 

which contain two types of standards. The content standards might be more familiar to 45 

many educators; they describe for each grade the mathematical expertise, skills, and 46 

knowledge that students should develop. The criteria to teach and measure math 47 

practices, the Standards for Mathematical Practice (SMPs), describe the ways of 48 

interacting with mathematics individually and collaboratively that make up the practices 49 

of the discipline. Eight SMPs are included in the CA CCSSM. 50 

Habits of Mind and Habits of Interaction 51 

The past several decades in mathematics education have included a national push to 52 

focus on both the habits of mind and habits of interaction that students need in order to 53 

become powerful users of mathematics and better interpret and understand their world. 54 

Habits of mind include making or using mathematical representations, attending to 55 

mathematical structure, persevering in solving problems, and reasoning. Reasoning 56 

includes the processes of inferencing, conjecturing, generalizing, exemplifying, proving, 57 

arguing, and convincing (Jeannotte and Kieran, 2017). 58 

Habits of interaction are linguistic processes and include such things as explaining 59 

one’s thinking, justifying a solution, listening to making sense of the thinking of others, 60 

and raising worthy questions for discussion. Both kinds of habits are fundamentally tied 61 

to language development and linguistic processes. Supporting reasoning processes and 62 

kinds of interactions involve supporting the development of language as students 63 

engage in these disciplinary practices. By the time California’s students graduate from 64 

high school, they should be comfortable engaging in many mathematical practices, 65 

including those that are central to the SMPs highlighted in this chapter: exploration, 66 
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discovery, description, explanation, generalization, and justification (including proof, 67 

examples, and non-examples). 68 

This framework situates mathematics learning in the context of investigations that allow 69 

students to experience mathematics as a set of lenses for understanding, explaining, 70 

predicting, and affecting authentic contexts (as defined in Chapter 1). The capacity to 71 

use mathematics to understand the world influences every aspect of life, from 72 

advocating for just policies in our communities to outlining personal finances to 73 

completing everyday tasks like cooking and gardening. For example, an understanding 74 

of fractions, ratios, and percentages is crucial to questions of fairness and justice in 75 

areas as diverse as incarceration, environmental and racial justice, and housing policy. 76 

Being able to reason with and about the mathematics imbedded in real-world situations 77 

(using ideas such as recursion, shape of curves, and rate of change) empowers 78 

Californians to make important and consequential decisions not only for their own lives, 79 

but also for the lives in their communities. Making sense of the mathematics underlying 80 

data-based claims about the benefits or dangers of particular foods, for example, 81 

empowers everyday decision making. This practice of reasoning about the world using 82 

data, described in Chapter 5, is another important example. 83 

The ability to reason is also a foundational skill for understanding the impact of 84 

stereotypes. Humans are quick to generalize from a small number of examples, and to 85 

construct causal stories to explain observed phenomena. In many situations, this 86 

tendency serves us well: people learn from very few examples that a stove might be 87 

painfully hot, and a Copernican model of a sun-centered universe enabled astronomers 88 

to predict the movement in the sky of planets and stars with reasonable accuracy. 89 

There are, however, many situations in which humans are poorly served by such 90 

generalizations, especially those that lead to inequities or the unjust treatment of people 91 

based on characteristics that call forth internal stories about expected capacities, 92 

motivation, behavior, or background. Such emotional stories are often based on little 93 

evidence and are socially buttressed, and action based on these stories does great 94 

harm to the communities and the individual students that comprise the schools they 95 
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represent. This tendency to assume, without adequate justification, that generalizations 96 

are valid is reinforced by many poorly-constructed math assessment questions, e.g., 97 

“What is the next term in this sequence: 1, 2, 4, 8, …?” instead of the more informative 98 

and reasoning-reinforcing “What rule or pattern might generate a sequence that begins 99 

1, 2, 4, 8, ...? According to your rule, what is the next term?” Mathematics education 100 

must prepare students to use mathematics to comprehend and respond to their world, 101 

deepening their understanding of mathematics and of the issues that impact their lives. 102 

The goal is that students learn to “use mathematics to examine…various phenomena 103 

both in one’s immediate life and in the broader social world and to identify relationships 104 

and make connections between them” (Gutstein, 2003, 45). 105 

Instructional Design: Content Connections, Drivers of Investigation, 106 

and Mathematical Practices 107 

As described in Chapters 1 and 2, instructional activities should be motivated by an 108 

investigation designed to elicit questions about authentic contexts; the mathematics 109 

content should help to answer those question; and students must engage in the target 110 

SMP in order to engage in the target content in the investigation’s context. 111 

Thus, content (falling broadly in four “Content Connections,” or “CCs”) should be 112 

developed through investigation of questions in authentic contexts; these investigations 113 

will naturally fall into one or more of the following Drivers of Investigation (DI). The DIs 114 

serve a purpose similar to that of the Crosscutting Concepts in the California Next 115 

Generation Science Standards, as unifying reasons that both elicit curiosity and provide 116 

the motivation for deeply engaging with authentic mathematics. The aim of the Drivers 117 

of Investigation is to ensure that there is always a reason to care about mathematical 118 

work, and that investigations allow students to make sense, predict, and/or affect the 119 

world. The DIs are: 120 

● DI1: Make Sense of the World (Understand and Explain) 121 

● DI2: Predict What Could Happen (Predict) 122 

● DI3: Impact the Future (Affect) 123 
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The four Content Connections described in the framework organize content and provide 124 

mathematical coherence through the grades: 125 

● CC1: Communicating Stories with Data 126 

● CC2: Exploring Changing Quantities 127 

● CC3: Taking Wholes Apart, Putting Parts Together 128 

● CC4: Discovering Shape and Space 129 

The three dimensions of Content Connections, the Standards for Mathematical Practice, 130 

and the Drivers of Investigation can guide instructional design. For example, students 131 

can make sense of the world (DI1) by exploring changing quantities (CC2) through 132 

classroom discussions wherein students have opportunities to construct viable 133 

arguments and critique the reasoning of others (SMP.3). 134 

This chapter focuses primarily on a cluster of three SMPs. Content Connections and 135 

Drivers of Investigation frame the organization of the grade-band chapters (Chapters 6–136 

8). 137 

Deeper Practice, or More Content Topics? 138 

Mastering high school-level mathematics content—to acquire the knowledge needed to 139 

understand the world—can empower students who will continue on to tertiary 140 

institutions where they will be expected to engage in career- and college-level 141 

mathematics. Despite this, there is a well-documented, persistent disconnect between 142 

high school mathematics teachers’ beliefs about what is important for their students to 143 

succeed in college, and what college instructors rate as most important for incoming 144 

students’ success. 145 

The ACT’s National Curriculum Survey (widely administered every three to five years) 146 

reported in 2006 that “High school mathematics teachers gave more advanced topics 147 

greater importance than did their postsecondary counterparts. In contrast, 148 

postsecondary…mathematics instructors rated a rigorous understanding of fundamental 149 

underlying mathematics skills and processes as being more important than exposure to 150 

more advanced mathematics topics” (ACT, Inc., 2007, 5). Six years later, the same 151 
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discrepancy was reflected in the fact that almost all topics rated by college faculty as 152 

most important for incoming students are typically taught in grade nine or earlier (ACT, 153 

Inc., 2013, 6). Again in 2020, the top ten most important skills for incoming students, as 154 

rated by instructors of entry-level college math courses, are grade nine (or earlier) 155 

topics (ACT, Inc., 2020, 11). 156 

This misunderstanding about the types of experiences that best prepare students for 157 

college mathematics success produces high-school graduates who enter college with a 158 

superficial grasp of superfluous procedures and little conceptual framework. The goal is 159 

to impart a deep but flexible procedural knowledge which helps students to understand 160 

important concepts, and deep conceptual knowledge which helps to make sense of and 161 

connect procedures and ideas. Clarified further, “procedural knowledge learning should 162 

be structured in a way that emphasizes the concepts underpinning the procedures in 163 

order for conceptual knowledge to improve concurrently” (Maciejewski and Star, 2016). 164 

For example, the “standard” algorithm for adding multi-digit whole numbers should be 165 

encountered by students as a way to encode place value- and 166 

decomposing/recomposing-based ways of thinking about addition, supported by 167 

physical or visual models. In order to equip students for success in college-level 168 

mathematics and in jobs that require an application of mathematical skills to novel 169 

situations, the SMPs are designed to instill habits and behaviors that reflect a deep 170 

conceptual and procedural understanding. 171 

Unlike the content standards, the SMPs are the same for all grades K–12 (with one 172 

addition in high school [SMP.3.1] below). As students progress through mathematical 173 

content, the opportunities they have to deepen their knowledge of and skills in the 174 

SMPs should increase. 175 

● SMP.1: Make sense of problems and persevere in solving them 176 

● SMP.2: Reason abstractly and quantitatively 177 

● SMP.3: Construct viable arguments and critique the reasoning of others 178 

● SMP.4: Model with mathematics 179 

● SMP.5: Use appropriate tools strategically 180 
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● SMP.6: Attend to precision 181 

● SMP.7: Look for and make use of structure 182 

● SMP.8: Look for and express regularity in repeated reasoning 183 

Every SMP is crucial, and most worthwhile classroom mathematics activities require 184 

engagement in each to varying degrees throughout the year. Here the focus is on how 185 

three SMPs might interrelate in order to illustrate possibilities. The choice to highlight 186 

SMP.3, 7, and 8 does not reflect any position on their value relative to other SMPs nor 187 

to suggest these SMPs must go together or that other combinations of SMPs are less 188 

feasible. The chapter could have included many possible combinations for illustration, or 189 

even attempted to show relatively fewer or more SMPs in action together. All SMPs are 190 

important and can interrelate through classroom activities. 191 

Exploring and Reasoning With and About Mathematics 192 

Certain curricula more clearly represent the SMPs and, as a result, this chapter 193 

addresses the progression through the grades of a cluster of three of the SMPs, 194 

highlighted above: Construct Viable Arguments and Critique the Reasoning of Others 195 

(SMP.3, including the California-specific high school SMP.3.1 regarding proof); Look for 196 

and Make Use of Structure (SMP.7); and Look for and Express Regularity in Repeated 197 

Reasoning (SMP.8). These practices do not develop without careful attention across all 198 

grade levels and in relation to mathematical content. 199 

The following sequence of four processes is a useful guide for designing mathematical 200 

investigations that integrate multiple content and practice standards at the lesson or unit 201 

level (see Chapters 6, 7, and 8 for more grade-level guidance on mathematical 202 

investigations): 203 

1. Exploring authentic mathematical contexts 204 

2. Discovering regularity in repeated reasoning and structure 205 

3. Abstracting and generalizing from observed regularity and structure 206 

4. Reasoning and communicating with and about mathematics in order to develop 207 

mathematical meaning and to share and justify conclusions 208 
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A classroom where students are engaged in these processes might look different to a 209 

visitor (or to the teacher!) than math classes portrayed in popular media. While these 210 

processes focus on communication as sharing and justifying mathematical ideas, 211 

mathematical investigations involve multiple communicative processes for connecting 212 

and interacting with others and mathematics. Evidence of SMPs 3, 7, and 8 (among 213 

others) might include the following: 214 

● Students trying multiple examples and comparing (SMP.1, 7): Ex., “I tried 6; what 215 

did you do?” 216 

● Students challenging each other (SMP.3): Ex., “I see why you think that from 217 

what you tried. I don’t think that always works because….” 218 

● Predictions being shared (often these reflect early noticing of repeated reasoning 219 

and structure, SMP.7 and SMP.8): Ex., “I think that when we try with a hexagon, 220 

we’ll get….” 221 

● Students justifying their predictions (SMP.3, 7, and 8): Ex., “No matter what 222 

number we use, it will always be true that….” 223 

In short, a classroom with evidence of SMP.3, 7, and 8 will include students using their 224 

own understanding to reason about authentic mathematical contexts and to share that 225 

reasoning with others. 226 

Supporting Linguistically Diverse Students to Explore and Reason 227 

As is clear from the descriptions above, engagement in SMP.3, 7, and 8 involves 228 

significant language demands, for the purpose of understanding others’ ideas and 229 

communicating one’s own. The California English Language Development Standards 230 

(CA ELD Standards, https://www.cde.ca.gov/sp/el/er/eldstandards.asp) describe 231 

linguistic processes and resources that are developed as students build their English 232 

language proficiency (CDE, 2014). The CA ELD Standards, used in parallel with the 233 

SMPs and content standards, describe expectations for students’ ability to use 234 

language to engage in the practice of mathematics. 235 
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The CA ELD Standards are organized, in each grade, in three parts: “Interacting in 236 

Meaningful Ways,” “Learning About How English Works,” and “Using Foundational 237 

Literacy Skills.” Parts I and II have common structure across the grades, and this 238 

chapter will highlight connections to these standards using this numbering—for example 239 

(CA ELD I.A.3: Collaborative—Offering opinions and negotiating with or persuading 240 

others). 241 

Part I: Interacting in Meaningful Ways 242 

A. Collaborative (engagement in dialogue with others) 243 

1. Exchanging information and ideas via oral communication and 244 

conversations 245 

2. Interacting via written English (print and multimedia) 246 

3. Offering opinions and negotiating with or persuading others 247 

4. Adapting language choices to various contexts 248 

B. Interpretive (comprehension and analysis of written and spoken texts) 249 

5. Listening actively and asking or answering questions about what was 250 

heard 251 

6. Reading closely and explaining interpretations and ideas from reading 252 

7. Evaluating how well writers and speakers use language to present or 253 

support ideas 254 

8. Analyzing how writers use vocabulary and other language resources 255 

C. Productive (creation of oral presentations and written texts) 256 

9. Expressing information and ideas in oral presentations 257 

10. Writing literary and informational texts 258 

11. Supporting opinions or justifying arguments and evaluating others’ 259 

opinions or arguments 260 

12. Selecting and applying varied and precise vocabulary and other language 261 

resources  262 

 Part II: Learning About How English Works 263 

A. Structuring Cohesive Texts 264 
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1. Understanding text structure and organization based on purpose, text 265 

type, and discipline 266 

2. Understanding cohesion and how language resources across a text 267 

contribute to the way a text unfolds and flows 268 

B. Expanding and Enriching Ideas 269 

3. Using verbs and verb phrases to create precision and clarity in different 270 

text types 271 

4. Using nouns and noun phrases to expand ideas and provide more detail 272 

5. Modifying to add details to provide more information and create precision 273 

C. Connecting and Condensing Ideas 274 

6. Connecting ideas within sentences by combining clauses 275 

7. Condensing ideas within sentences using a variety of language resources 276 

Note the high degree of alignment between the evidence of engagement in SMP.3, 7, 277 

and 8 (at the end of the previous section) and these CA ELD Standards: I.A.1: 278 

Collaborative— Exchanging information and ideas via oral communication and 279 

conversations; 1.A.3: Collaborative—Offering opinions and negotiating with or 280 

persuading others; I.B.5: Interpretive—Listening actively and asking or answering 281 

questions about what was heard; I.B.7: Interpretive—Evaluating how well writers and 282 

speakers use language to present or support ideas; I.C.11: Productive— Supporting 283 

opinions or justifying arguments and evaluating others’ opinions or arguments. 284 

Just as the CA CCSSM is not a design for instruction but rather a definition of goals, so 285 

too the CA ELD Standards do not prescribe instruction that will help students achieve 286 

the CA ELD Standards. For tools to design instruction, referenced here and throughout 287 

the chapter are tools from Principles for the Design of Mathematics Curricula: Promoting 288 

Language and Content Development (Zwiers et al., 2017). This framework, referred to 289 

as the Understanding Language (UL) Framework sets out four design principles and 290 

eight Mathematical Language Routines. These are referenced as (UL DP2) and (UL 291 

MLR5), for example. 292 
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UL Design Principles 293 

DP1. Support sense-making: Scaffold tasks and amplify language so 294 

students can make their own meaning. 295 

DP2. Optimize output: Strengthen the opportunities and supports for 296 

helping students to describe clearly their mathematical thinking to others, 297 

orally, visually, and in writing. 298 

DP3. Cultivate conversation: Strengthen the opportunities and supports 299 

for constructive mathematical conversations (pairs, groups, and whole 300 

class). 301 

DP4. Maximize linguistic and cognitive meta-awareness: Strengthen the 302 

“meta-” connections and distinctions between mathematical ideas, 303 

reasoning, and language. 304 

UL Mathematical Language Routines 305 

See the Understanding Language document (Zwiers et al., 2017) to learn about these 306 

routines and see examples. 307 

MLR1. Stronger and Clearer Each Time 308 

MLR2. Collect and Display 309 

MLR3. Critique, Correct, and Clarify 310 

MLR4. Information Gap 311 

MLR5. Co-Craft Questions and Problems 312 

MLR6. Three Reads 313 

MLR7. Compare and Connect 314 

MLR8. Discussion Supports 315 

For many students, small groups in which students can do the investigations, critiques, 316 

and reasoning in their home or preferred language may support and strengthen their 317 

understanding. In designated ELD time, the language of critiquing, reasoning, 318 

generalizing, and arguing is a space to help prepare English learners for engagement in 319 

the SMPs and the mathematical content. This framework’s approach integrates SMPs 320 
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3, 7, and 8 in the context of mathematical investigations to highlight ways that 321 

mathematical practices can come together through exploration and reasoning; this 322 

approach also supports the attainment of the CA ELD Standards, when instruction 323 

incorporates the UL Design Principles and Mathematical Language Routines. 324 

Standards for Mathematical Practice 3, 7, and 8 325 

It is important to revisit these SMPs as they appear in the CA CCSSM. 326 

● SMP.3: Construct viable arguments and critique the reasoning of others. 327 

Mathematically proficient students understand and use stated 328 
assumptions, definitions, and previously established results in 329 
constructing arguments. They make conjectures and build a logical 330 
progression of statements to explore the truth of their conjectures. They 331 
are able to analyze situations by breaking them into cases, and can 332 
recognize and use counterexamples. They justify their conclusions, 333 
communicate them to others, and respond to the arguments of others. 334 
They reason inductively about data, making plausible arguments that 335 
take into account the context from which the data arose. Mathematically 336 
proficient students are also able to compare the effectiveness of two 337 
plausible arguments, distinguish correct logic or reasoning from that 338 
which is flawed, and—if there is a flaw in an argument—explain what it 339 
is. Elementary students can construct arguments using concrete 340 
referents such as objects, drawings, diagrams, and actions. Such 341 
arguments can make sense and be correct, even though they are not 342 
generalized or made formal until later grades. Later, students learn to 343 
determine domains to which an argument applies. Students at all grades 344 
can listen or read the arguments of others, decide whether they make 345 
sense, and ask useful questions to clarify or improve the arguments. CA 346 
3.1 (for higher mathematics only): Students build proofs by induction and 347 
proofs by contradiction. 348 

Notably, neither “argument” nor “critique” has negative connotations in this context—349 

neither word implies disagreement. In the sense used here, argument is “a reason or 350 

set of reasons given in support of an idea, action or theory,” and critique means 351 

“evaluate (a theory or practice) in a detailed and analytical way” (Oxford, 2019). Thus, 352 

“critiquing” includes making sense of the reasoning of others, as well as noticing 353 

important ideas and connections, wondering about unjustified claims, and offering 354 
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alternative ideas. Everyday notions of the terms “argument” and “critique” can 355 

inadvertently invite students to interpret mathematics classroom discussions as 356 

competitions for status; expressing disagreement can feel like an insult rather than an 357 

invitation for reasoning (Langer-Osuna and Avalos, 2015). 358 

Building a classroom culture in which students can become proficient at constructing 359 

and critiquing arguments requires rich contexts and problems in which multiple 360 

approaches and conclusions can arise, creating a need for generalization and 361 

justification (see the figure on page 20 below). Teaching for the development of SMPs, 362 

especially SMP.3, includes developing classroom norms for discussions that focus on 363 

examining the “truthiness” (i.e., validity) of the mathematical ideas themselves, rather 364 

than evaluating the student offering ideas in what Boaler (2002, drawing on Pickering, 365 

1995) referred to as the “dance of agency.” According to Principles to Actions: Ensuring 366 

Mathematical Success for All, “Effective teaching of mathematics facilitates discourse 367 

among students to build shared understanding of mathematical ideas by analyzing and 368 

comparing student approaches and arguments” (NCTM, 2014, 12). 369 

Suggested Math Class Norms: 370 

1. Everyone can learn math to the highest levels 371 

2. Mistakes are valuable for learning 372 

3. Questions are important 373 

4. Math is about creativity and making sense 374 

5. Math is about connections and communicating 375 

6. Depth is more important than speed 376 

7. Math class is about learning with understanding 377 

8. Everyone has the right to share their thinking 378 

9. We learn more when we attend to and make sense of the thinking of others 379 

10. All cultures reflect histories of important mathematical thinking and applications. 380 

It is possible to prompt this culture by valuing the role of skeptic through the use of 381 

purposeful and probing questions, removing or delaying teacher validation of reasoning 382 

in favor of class-negotiated acceptance, and explicitly reminding students frequently that 383 
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mathematicians prove claims by reasoning (Boaler, 2019). To do so, classroom norms 384 

must set the expectation that students respectfully attend to and make sense of the 385 

thinking of others so that they can learn from their classmates’ broad perspectives and 386 

deepen their own thinking. Students must experience a classroom environment where 387 

teachers and all students have the right to share their thinking and will be supported in 388 

doing so. Further, classroom norms must set the expectation that students respectfully 389 

attend to and make sense of the thinking of others; this is especially important with 390 

respect to differences in mathematical ideas, cultural experiences, and linguistic 391 

expressions. These norms are valuable beyond learning math; they help students learn 392 

to be contributing members of teams. 393 

● SMP.7: Look for and make use of structure. 394 

Mathematically-proficient students look closely to discern a pattern or 395 
structure. Young students, for example, might notice that three and 396 
seven more is the same amount as seven and three more, or they may 397 
sort a collection of shapes according to how many sides the shapes 398 
have. Later, students will see 7 × 8 equals the well-remembered 7 × 5 + 399 
7 × 3, in preparation for learning about the distributive property. In the 400 
expression x2 + 9x + 14, older students can see the 14 as 2 × 7 and the 401 
9 as 2 + 7. They recognize the significance of an existing line in a 402 
geometric figure and can use the strategy of drawing an auxiliary line for 403 
solving problems. They also can step back for an overview and shift 404 
perspective. They can see complicated things, such as some algebraic 405 
expressions, as single objects or as being composed of several objects. 406 
For example, they can see 5 – 3(x – y)2 as 5 minus a positive number 407 
times a square and use that to realize that its value cannot be more than 408 
5 for any real numbers x and y. 409 

● SMP.8: Look for and express regularity in repeated reasoning. 410 

Mathematically proficient students notice if calculations are repeated, 411 
and look both for general methods and for shortcuts. Upper elementary 412 
students might notice when dividing 25 by 11 that they are repeating the 413 
same calculations over and over again, and conclude they have a 414 
repeating decimal. By paying attention to the calculation of slope as they 415 
repeatedly check whether points are on the line through (1, 2) with slope 416 
3, middle school students might abstract the equation (y – 2)/(x – 1) = 3. 417 
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Noticing the regularity in the way terms cancel when expanding (x – 1)(x 418 
+ 1), (x – 1)(x2 + x + 1), and (x – 1)(x3 + x2 + x + 1) might lead them to 419 
the general formula for the sum of a geometric series. As they work to 420 
solve a problem, mathematically proficient students maintain oversight of 421 
the process, while attending to the details. They continually evaluate the 422 
reasonableness of their intermediate results. 423 

Patterns in SMP.7 might be numeric, geometric, algebraic, or a combination. Structure 424 

is “the arrangement of and relations between the parts or elements of something 425 

complex” (Oxford, 2019). SMP.7 and SMP.8 are key to abstracting. Stepping back from 426 

concrete objects to consider, all at the same time, a class of objects in terms of some 427 

set of identical properties—and generalizing—extending a known result to a larger 428 

class. Reasoning abstractly and developing, testing, and refining generalizations are 429 

essential components of doing mathematics, including solving problems (National 430 

Governors Association Center for Best Practices [NGACBP], 2010). 431 

Abstracting, Generalizing, Argumentation 432 

Bringing all three SMPs together—abstracting, generalizing, and argumentation—433 

empowers teachers to use classroom discussions and other collaborative activities 434 

where students make sense of mathematics together. Teacher facilitation of high-quality 435 

mathematics discourse with attention to language development is the key to unlocking 436 

these practices for students and bringing them holistically into practice. Historically, 437 

proficiency in mathematics has been defined as an individual, cognitive construct. 438 

However, the past three decades of mathematics classroom research has revealed the 439 

ways in which learning and doing mathematics is rooted in social activity (Lerman, 440 

2000; National Academies of Sciences, Engineering, and Medicine, 2018). 441 

Still, merely asking students to talk to each other in math class is insufficient. The 442 

facilitation of high-quality discourse needs to be intentional, especially with attention to 443 

language development. Assignments for student interactions that lack intention could 444 

hinder or prevent high-quality math discourse. For example, primary language grouping 445 

can support effective interactions and communication is important. Another option is to 446 

consider assigning a student to serve as a bilingual broker for each small group of 447 

English learners and English-only students. This student is given extra practice to 448 
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provide the language support leading to understanding by each group member and an 449 

appreciation of everyone's thinking. In the following progressions through the grade 450 

bands, the framework illustrates ways that students might progress in the SMPs through 451 

such classroom discourse activity, based on thoughtful whole- and small-group activities 452 

where students access opportunities to grapple with and discuss mathematical ideas 453 

and problems through engagement in the SMPs—especially SMPs 3, 7, and 8. 454 

Intentional patterns of grouping, such as primary language grouping to support effective 455 

interactions and communication, can be effective at supporting multilingual students’ 456 

engagement and access. 457 

Such strategies must be used carefully, however; the example here is specific to 458 

developing language for math discourse. Some strategies for setting up groups also 459 

have serious pitfalls. Grouping by perceived “ability” can be the first step in a system of 460 

tracking (if “similar ability” students are grouped together—see Chapter 9), or can 461 

unintentionally communicate beliefs about who is capable (when groups are 462 

intentionally stratified according to perceived “ability,” so that students soon understand 463 

who is the “high kid” and who is the “low kid” in the group). Aside from language 464 

development considerations and any safety concerns, randomizing group assignments 465 

can convey to each student that everyone has something to offer the group’s learning, 466 

and something to learn from the thoughts of others. 467 

Progressions in the Mathematical Practices 468 

Young learners begin to engage with mathematical ideas through real-world contexts. 469 

As students access domains of mathematics they increase their ability explore purely 470 

mathematical contexts; for instance, even young learners who have become 471 

comfortable with the natural numbers—as a context in which reasoning can occur—can 472 

explore patterns in even and odd numbers and use shared definitions to reason about 473 

them. Yet even as students increasingly explore mathematical worlds, opportunities to 474 

mathematize the real world continue to be important from the early grades into 475 

adulthood (as illustrated in both Chapters 3 and 5). 476 
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While the practice standards remain the same across grade levels, the ways in which 477 

students engage in the practices progress and develop through experience and 478 

opportunity. In early grades, mathematical reasoning is primarily representation-based: 479 

When justifying a claim about even and odd numbers, students will typically refer to 480 

some representation like countable objects, a story, or a number line or other drawing. 481 

Representational and visual thinking remains important through high school and 482 

beyond. 483 

As students become comfortable in additional mathematical contexts and develop more 484 

shared understanding, they might reason within these purely mathematical contexts as 485 

they rely on mathematical definitions and prior understanding. However, teachers 486 

should recognize the importance of concrete ways of making and justifying conjectures, 487 

to avoid unduly privileging more abstract reasoning. Moving too early to abstract 488 

reasoning—before all students have an adequate base of representations (physical, 489 

visual, contextual, or verbal) with which to reason—can have the effect that many 490 

students experience mathematical arguments as meaningless, abstract manipulation. 491 

Ample mathematical reasoning and argumentation with concrete representations (such 492 

as appropriate manipulatives and visual representations), with already-understood 493 

mathematical settings, and with contextual examples helps to foster a classroom 494 

learning environment that provides access for and builds understanding in all students. 495 

(Note that concrete is used here not in the sense of tangible and physical, but in the 496 

sense of making sense; see Gravemeijer, 1997; Van Den Heuvel-Panhuizen, 2003.) For 497 

example, before attempting in grade two to build competence in the use of any 498 

particular algorithm to add 2-digit numbers, students must have some flexible strategies 499 

that involve place value and decomposing/recomposing—supported by physical and/or 500 

visual representations such as base ten blocks and number line diagrams. Then an 501 

algorithm (such as the “standard” algorithm) is rightly understood as a useful tool that 502 

encodes a process that make sense. 503 

The principle of learning an abstract idea by accessing concrete representations and 504 

examples does not apply to students in younger grades; it is needed any time students 505 

encounter new concepts. For example, students in grades five and six, working on their 506 
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understanding of percentage, benefit from a bar representation that is used in 507 

increasingly abstract ways, finally simplifying to a double number line (Van Den Heuvel-508 

Panhuizen, 2003). The use of representations and visuals provides scaffolding that 509 

English learners and others may use to connect the academic language to their 510 

conceptual understanding. 511 

Consider a sixth-grade class that is using such a bar representation to explore 512 

percentages. Different students will see different uses of the representation, and use it 513 

to reason in different ways. Some may quickly generalize calculation patterns that they 514 

observe (SMP.7), and begin to calculate without reference to the bar representation: “If 515 

the price after a 25-percent discount is $96, then $96 is three parts and I need to figure 516 

out the missing fourth part, so I just divide that by three and add it to $96 to get the 517 

original price of $128.” 518 

This realization can be used productively, both to help these students to connect their 519 

method to the sense-making bar representation (SMP.8) and to help other students 520 

understand their classmates’ ideas. One useful routine for this is careful selecting, 521 

sequencing, and connecting of student work as described in 5 Practices for 522 

Orchestrating Productive Mathematics Discussions (Smith and Stein, 2018). However, it 523 

is easy—even when attempting to implement the 5 Practices routine—to hold up the 524 

work of students who have moved beyond the concrete representation as the preferred 525 

method (because it might appear to be quicker, or more generalized, or closer to a final 526 

understanding teachers hope all students will reach). This can create the false notion 527 

that reliance on sense-making representations is an indication of weakness. Therefore, 528 

it is important for teachers to support all students to make sense of each other’s 529 

approaches by building connections between them. 530 

Evidence from neuroscience suggests that some of the most effective understandings 531 

come about when connections are made between visual/physical and numerical or 532 

symbolic representations of ideas (see figure from NCTM, 2014). When students relate 533 

numbers to visual representations, they make connections between brain pathways that 534 

link ideas they hold in different parts of the brain. These connections are important to 535 
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students at all ages and grade levels (Boaler, Chen, Williams, and Cordero, 2016). See 536 

the Connecting Representations instructional routine at (Kelemanik and Lucenta, n.d.) 537 

for an example of a classroom practice to build these connections. 538 

 539 

At all grades, students should have ample experience in all of the processes above 540 

(exploring authentic contexts, discovering regularity and structure, abstracting and 541 

generalizing, and reasoning and communicating). As with the modeling cycle (see 542 

Chapter 8), some of these processes are historically emphasized far more than others, 543 

contributing to many students’ loss of a belief in mathematics as a sense-making 544 

activity. Classroom activities that are designed to engage students in these processes 545 

therefore must be sufficiently open ended, to allow students room to explore, must give 546 

access to the regularity and structure that is present, and must allow generalization to 547 

broader settings. 548 

Teaching practices for the development of SMPs 549 

Principles to Action: Ensuring Mathematical Success for All (NCTM, 2014) outlines eight 550 

“Mathematics Teaching Practices:” 551 

1. Establish mathematics goals to focus learning. 552 

2. Implement tasks that promote reasoning and problem solving. 553 

3. Use and connect mathematical representations. 554 

4. Facilitate meaningful mathematical discourse. 555 
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5. Pose purposeful questions. 556 

6. Build procedural fluency from conceptual understanding. 557 

7. Support productive struggle in learning mathematics. 558 

8. Elicit and use evidence of student thinking. 559 

Some of these items are especially relevant in developing SMPs, especially SMP.3, 7, 560 

and 8. First, mathematical goals (Teaching Practice 1) must include SMPs as central 561 

drivers of activity design that goes beyond the sentiment that rich tasks naturally 562 

engage students in all eight SMPs. Second, posing purposeful questions (Teaching 563 

Practice 5) is crucial in establishing students’ inclination to engage in the SMPs as they 564 

encounter mathematical situations. Reprinted below is a framework for teacher question 565 

types (NCTM, 2014). All question types are important; type 1 (Gathering information) is 566 

traditionally over-represented while types 2, 3, and 4 help make clear that students are 567 

expected to engage in the SMPs—these types also help to develop language facilities 568 

beyond recall. Also, Chapter 2 offers guidance in inclusive teaching approaches that 569 

foster SMPs as well. The table has been augmented in the “Description” column with a 570 

note about the Depth of Knowledge (DOK) levels (Webb, 2002) that are most likely to 571 

be probed by the given teacher question type. 572 

  573 
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Teacher 
Question Type 

Description Examples 

1. Gathering 
information 

Students recall facts, 
definitions, or 
procedures. 

DOK Level 1 (Recall) 

CA ELD: I.A.1, I.C.9 

When you write an equation, 
what does the equal sign tell 
you? 

What is the formula for finding 
the area of a rectangle? 

What does the interquartile 
range indicate for a set of data? 

2. Probing 
thinking 

Students explain, 
elaborate, or clarify their 
thinking, including 
articulating the steps in 
solution methods or the 
completion of a task. 

Usually DOK Level 3 
(Strategic Thinking); 
possibly Level 2 
(Skill/Concept)  

CA ELD: I.A.1, I.C.9, 
I.C.11 

As you drew that number line, 
what decisions did you make so 
that you could represent 7 
fourths on it? 

Can you show and explain more 
about how you used a table to 
find the answer to the 
Smartphone Plans task? 

It is still not clear how you 
figured out that 20 was the scale 
factor, so can you explain it 
another way? 

3. Making the 
mathematics 
visible 

Students discuss 
mathematical structures 
and make connections 
among mathematical 
ideas and relationships. 

DOK Level 3 (Strategic 
Thinking) and/or Level 4 
(Extended Thinking) 

CA ELD: I.A.1, I.B.5, 
I.C.9, I.C.12, II.B.3, 
II.B.4, II.B.5, II.C.6 

What does your equation have 
to do with the band concert 
situation? 

How does that array relate to 
multiplication and division? 

In what ways might the normal 
distribution apply to this 
situation? 
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Teacher 
Question Type 

Description Examples 

4. Encouraging 
reflection 
and 
justification 

Students reveal deeper 
understanding of their 
reasoning and actions, 
including making an 
argument for the validity 
of their work. 

DOK Level 4 (Extended 
Thinking) 

CA ELD: I.A.3, I.A.4, 
I.B.5, I.B.7, I.B.8, I.C.11, 
I.C.12, II.B.3, II.B.4, 
II.B.5 

How might you prove that 51 is 
the solution? 

How do you know that the sum 
of two odd numbers will always 
be even? 

Why does plan A in the 
Smartphone Plans task start out 
cheaper but become more 
expensive in the long run? 

Finally, this table, slightly adapted from Barnes and Toncheff, 2016, helps to connect 574 

the mathematical teaching practices above (MTPs) with all of the SMPs.  575 
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Standards for 
Mathematical 
Practice (SMPs) 

Teacher Action Connections Mathematics 
Teaching Practices 
(MTPs) 

SMP.1 Make sense of 
problems and 
persevere in solving 
them 

SMP.2 Reason 
abstractly and 
quantitatively. 

SMP.3 Construct 
viable arguments and 
critique the reasoning 
of others. 

SMP.4 Model with 
mathematics. 

SMP.5 Use 
appropriate tools 
strategically. 

SMP.6 Attend to 
precision. 

SMP.7 Look for and 
make use of structure. 

SMP.8 Look for and 
express regularity in 
repeated reasoning. 

Mathematics lessons align to the big 
ideas and teachers clearly 
communicate them to students 
(MTP1). Lessons include complex 
tasks (MTP2), opportunities for visible 
thinking (MTP8 and MTP4), and 
intentional questioning (MTP5) to 
promote deeper mathematical 
thinking (MTP6). Teachers design 
lessons from the student’s 
perspective to provide multiple 
opportunities to make sense of the 
mathematics (MTP7). 

To build SMP.1, teachers focus on 
MTP7 and MTP2. 

To build SMP.2, teachers focus on 
MTP2 and MTP3. 

To build SMP.3, teachers focus on 
MTP4 and MTP5. 

To build SMP.4, teachers focus on 
MTP3 and MTP8. 

To build SMP.5, teachers focus on 
MTP2 and MTP3. 

To build SMP.6, teachers focus on 
MTP4 and MTP2. 

To build SMP.7 and SMP.8, teachers 
focus on tasks (MTP2) 

MTP1 Establish 
mathematics goals to 
focus learning. 

MTP2 Implement tasks 
that promote reasoning 
and problem solving. 

MTP3 Use and connect 
mathematical 
representations. 

MTP4 Facilitate 
meaningful 
mathematical 
discourse. 

MTP5 Pose purposeful 
questions. 

MTP6 Build procedural 
fluency from 
conceptual 
understanding. 

MTP7 Support 
productive struggle in 
learning mathematics. 

MTP8 Elicit and use 
evidence of student 
thinking. 

Grades K–5 Progression of SMPs 3, 7, and 8 576 

Imagine a teacher puts the number 36 on the board and asks students to determine all 577 

the ways they can make 36. In the context of an open problem such as this, young 578 

learners conjecture, notice patterns, use the structure of place value, notice and make 579 
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use of properties of operations, and make sense of the reasoning of others. These 580 

practices often occur together as part of classroom discussions that focus on 581 

argumentation and reasoning through engaging mathematical contexts. The choice of 582 

number here makes a big difference; a grade-three teacher might choose 36 to build 583 

multiplication ideas; a kindergarten teacher might use 12 to both formatively assess and 584 

work to strengthen students’ emerging operation understanding. 585 

Consider, for example, the following first-grade snapshot of a number talk activity. 586 

Number talks are brief, daily activities that support number sense. 587 

First-Grade Snapshot: Number Talks for Reasoning 588 

Big Idea: Tens and ones. 589 

CA ELD: I.A.3, I.B.5, I.C.11. 590 

Prior to the lesson, the teacher understands that presenting a question or problem to 591 

the whole class and asking for individual response may be challenging for some 592 

students, especially students who are still gaining proficiency in English. In the 593 

designated ELD lessons prior to this whole group lesson, the teacher practices the 594 

discourse needed to explain mathematical thinking and problem solving so that 595 

multilingual students have the language they need to participate in the whole class 596 

lesson. 597 

The teacher introduces the number talk by placing the problem 7+3 on the board, 598 

waiting patiently as small silent thumbs pop up communicating that students are ready 599 

to offer an answer and the strategy they used to figure it out. The teacher selects a first 600 

student, Iggy, to share. 601 

Teacher: Iggy, how did you figure out 7+3? 602 

Iggy: I knew 7+2 is 9 and 9+1 is 10. 603 

Teacher records Iggy’s thinking on the board and re-voices their response, then probes 604 

Iggy further: Iggy, where did the 2 and the 1 come from? 605 
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Iggy: That number. 606 

Teacher: Which number? Who can add on to Iggy’s strategy? How did they know to add 607 

2 more and then 1 more? Sam? 608 

Sam: 2 and 1 are both in 3. Iggy broke down 3. 609 

Teacher: You noticed that 2 + 1 is 3. Iggy is that what you did? Did you think, let me 610 

break down 3 because I know 7+2 is 9 and 9 +1 is 10? 611 

Iggy: Yes 612 

Teacher: Who else wants to share how they figured out the answer? Alex? 613 

Alex: Counting on? I did like, I started with 7 and then I counted, 8, 9, 10. 614 

Teacher records Alex’s thinking and re-voices their response, then adds: So that’s a 615 

different strategy? (Alex nods.) Did anyone else count on like Alex? 616 

The teacher selects other students who share their own strategies and make sense of 617 

their peers’ reasoning, all based in a relatively straightforward computation problem. 618 

This approach supports mathematical sense-making and communication. While 619 

students certainly arrive at the answer “10,” the focus of the activity is making sense of 620 

the addition problem, thinking flexibly and creatively about a range of ways to solve it, 621 

communicating one’s thinking and making sense of the reasoning of others. Exploring 622 

authentic mathematical contexts. This 10-minute activity, exploring one addition 623 

problem deeply, will develop students’ sense-making and strategies for addition—more 624 

so than spending 10 minutes doing a worksheet of routine problems. 625 

  626 
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Authentic (from Chapter 1): An authentic problem, activity, or context is one in which 627 

students investigate or struggle with situations or questions about which they actually 628 

wonder. Some principles for authentic problems include 1) Problems have a real 629 

purpose; 2) Relevance to learners and their world; 3) Doing mathematics adds 630 

something; and 4) Problems foster discussion (Özgün-Koca, Chelst, Edwards, and 631 

Lewis, 2019). 632 

Culturally Responsive-Sustaining Education: Education that recognizes and builds 633 

on multiple expressions of diversity (e.g., race, social class, gender, language, sexual 634 

orientation, religion, ability) as assets for teaching and learning. (NYSED, 2019) 635 

SMP.3, 7, and 8 describe ways of exploring mathematical contexts such as numerical 636 

patterns, geometry, and place-value structure. These activities might involve multiple 637 

visual representations, such as fractions represented in both area models, like 638 

partitioned circles, and linear models, like number lines. Allowing students to explore the 639 

same mathematical ideas and operations using multiple representations and strategies 640 

is crucial for students to develop flexible ways of thinking about numbers and shapes 641 

(e.g., Rule of Four [San Francisco Unified School District, n.d.]). Students of all grade 642 

levels should engage in opportunities to create important brain connections through 643 

seeing mathematical ideas in different ways (also see Chapter 2). 644 

At the elementary level, students work with familiar numbers. This may mean they 645 

generalize in ways that will be revisited and revised in the later grades as new numbers 646 

and mathematical principles are introduced. For example, at the early-elementary level, 647 

students may appropriately generalize about the behavior of positive whole numbers in 648 

ways that are revisited at the later elementary grades with the introduction of fractions 649 

(later called rational numbers), and then again later on at advanced grades with the 650 

introduction of imaginary or irrational numbers. Students may also use everyday 651 

contexts and examples in order to make arguments. For example, a student might offer 652 

a story about two friends sharing cookies to demonstrate that an odd number, when 653 

divided by two, has a remainder of one. The Data Science chapter further outlines ways 654 

that everyday contexts can become generative for learning and doing mathematics 655 
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together. Importantly, contexts should be authentic to students (as defined above)—not 656 

the hypothetical contexts used in many textbooks that require students to suspend their 657 

common sense in order to engage with the intended mathematics (see Boaler, 2009). It 658 

is important to make mathematical contexts culturally relevant to ensure that diverse 659 

student experiences are considered and possibly make connections with students’ 660 

families. Chapter 2 offers examples of culturally relevant contexts for learning 661 

mathematics. Engaging students’ families, cultures, and communities in mathematics 662 

learning is an important strategy to ensure the cultural relevance of mathematics 663 

lessons and to enhance students’ mathematical identities. 664 

Discovering regularity in repeated reasoning and structure 665 

Students at the elementary level may notice and use structures such as place value, 666 

properties of operations, and attributes about shapes to make conjectures and solve 667 

problems. Additionally, students notice and make use of regularity in repeated 668 

reasoning. At the elementary level, students may notice, through repeatedly multiplying 669 

with the number four, that it always results in the same product as doubling twice. 670 

Students might also notice a pattern in the change of a product when the factor is 671 

increased by one. For example, that since 7 x 8 = 56, then 7 x 9 will be 7 more than 56. 672 

These regularities may lead to claims about general methods or the development of 673 

shortcuts based on conceptual reasoning. 674 

A variety of reasoning activities support students in thinking flexibly about operations 675 

with numbers and relationships between numbers. In number talks and dot talks, 676 

students share and connect multiple strategies by explaining why the strategies work or 677 

comparing advantages and disadvantages (UL MLR7). Chapter 3 offers a grade-two 678 

number talk vignette where students work on doubles posed as addition problems. In 679 

the vignette, students share strategies to solve 13 + 13. Many of the strategies made 680 

use of place value structure and counting strategies. As students in the snapshot offer 681 

approaches and consider the ideas shared by their peers, some students revise their 682 

answers. In a “Collect and Display” activity (UL MLR2; CA ELD I.A.1, I.B.6, I.C.9, II.B.5), 683 

teachers can scribe student responses (using students’ exact words whenever possible 684 

and attributing authorship) on a graphic organizer on the board during the whole class 685 
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discussion comparing two mathematical ideas, such as expressions and equations. In a 686 

“Compare and Connect” activity (UL MLR7; CA ELD I.A.3, I.B.8, II.B.5, II.C.7), students 687 

relate the expressions to the diagrams by asking specific questions about how two 688 

different-looking representations could possibly mean the same thing. For example, a 689 

teacher might ask, “Where is the 2w in this picture?” or “Which term shows this line on 690 

the rectangle?” 691 

Abstracting or generalizing from observed structure and regularity 692 

Young learners might explore place value structure through manipulatives like ten 693 

frames. In a number talk with 10-frame pictures, students offer various strategies used 694 

to figure out the quantity shown. Implementing a “Compare and Connect” routine (UL 695 

MLR7) can support students’ language development as they engage in the 696 

mathematics. Students also attend to and discern patterns and structure as they 697 

construct and critique arguments. A student might notice that four sets of six gives the 698 

same total as six sets of four, and that this applies to three sets of seven and seven sets 699 

of three, and so on, to conjecture about the commutative property during a number talk. 700 

 701 

Reasoning and communicating to share and justify 702 

Part of constructing mathematical arguments includes understanding and using 703 

previously established mathematical assumptions, definitions, and results. For example, 704 
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an elementary-aged student might conjecture that two different shapes have equal area 705 

because, as the class has already recognized and agreed upon, the shapes are each 706 

half of the same rectangle. The student draws on prior knowledge that has already been 707 

demonstrated mathematically in order to make their argument. 708 

Constructing and critiquing mathematical arguments includes exploring the truth of 709 

particular conjectures through cases and counterexamples, and results in successively 710 

stronger and clearer arguments (UL MLR 1). At the elementary level, a student may 711 

use, for example, a rhombus as a counterexample to the conjecture that all 712 

quadrilaterals with four equal sides are squares. Students may use multiplication with 713 

fractions, decimals, one, or zero to counter the conjecture that multiplying always leads 714 

to a larger number. 715 

Grades 6–8 Progression of SMP.3, 7, and 8 716 

Students in middle school build on early experiences to deepen their interactions with 717 

mathematics and with others as they do mathematics together. During the elementary 718 

grades, students typically draw on concrete manipulatives and representation in order to 719 

engage in mathematical reasoning and argumentation. At the middle-school level, 720 

students may rely more on symbolic representations, such as expressions and 721 

equations, in addition to concrete referents (such as algebra tiles and area models for 722 

algebraic expressions; physical or drawn examples of geometric objects; and computer-723 

generated simulation models of data-generating contexts). Number talks (Parrish, 2010; 724 

Humphreys and Parker, 2015) and number strings (a series of related number talks or 725 

problems designed to build towards big mathematical ideas; see Fosnot and Dolk, 726 

2002) are useful at the middle school level as well, and offer a range of opportunities for 727 

students to build on their elementary grades experiences to make sense of 728 

mathematical ideas with peers. For example, consider the following classroom 729 

snapshot. 730 
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Authentic: An authentic problem, activity, or context is one in which students 731 

investigate or struggle with situations or questions about which they actually wonder. 732 

(from Chapter 1) 733 

Exploring authentic mathematical contexts 734 

Middle-school students become increasingly sophisticated observers of their everyday 735 

worlds as they develop new interests in understanding themselves and their 736 

communities. These budding interests can become engaging real-world contexts for 737 

mathematizing. The Data Science chapter offers examples of middle-school students 738 

exploring data about the world around them. 739 

Mathematical contexts to explore, in addition to those carrying forward from earlier 740 

grades (number patterns and two-dimensional geometry), include the structure of 741 

operations, more sophisticated number patterns, proportional situations and other linear 742 

functions, and patterns in computation. 743 

Grade Seven Snapshot: Estimating using structure 744 

Big Idea: Proportional relationships 745 

CA ELD: I.A.1, I.A.3, I.B.5, I.C.9, I.C.11. 746 

Prior to the lesson, a seventh-grade teacher—in order to ensure that all students, 747 

including linguistically and culturally diverse learners, are supported—engages students 748 

in an activity to practice the discourse needed to explain their thinking and problem 749 

solving. This activity, they hope, will also increase participation. The activity transitions 750 

into the teacher introducing the number string activity and writes this problem 751 

(MathTalks.d.) on the board: 752 

Are there more inches in a mile or seconds in a day? 753 

After some wait time for individual thinking, the teacher asks students to show where 754 

they are in their thinking using their fingers, a routine the class knows well: closed fist 755 

for “still trying to find an approach to try;” one finger for “have an approach and haven’t 756 
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got an answer yet;” two fingers for “have an answer with an explanation, and not very 757 

confident;” three fingers for “have an answer and an explanation that I’m confident in;” 758 

and four fingers for “have tried two or more approaches and confirmed my answer.” 759 

After a little more wait, she asks students to show again their status, and she chooses a 760 

student holding up two fingers: 761 

Teacher: Can you describe your approach that might help us figure out which is bigger? 762 

Courtney: I remember there are about 5,000 feet in a mile, so there are about 50,000 763 

inches in a mile since there are about 10 inches in a foot. I rounded them both down. 764 

But then with seconds, I tried to figure out 24 × 60 and if I round those, it’s only about 765 

1,200 seconds but that seems too small. [Teacher scribes both calculations, including 766 

units where the student included them.] 767 

Teacher: Is there anyone else who thinks they can go a little farther with this idea? 768 

Tristán: I tried the same thing but I got 60,000 inches in a mile instead of 50,000. 769 

Courtney: Did you round 12 inches in a foot down to 10? 770 

Tristán: Oh yeah, I didn’t. 771 

Teacher: Courtney, can you explain again why you thought something wasn’t right with 772 

your method? 773 

Courtney: When I tried to figure out the number of seconds, the number seemed too 774 

small—it was a lot smaller than the 50,000 I got for inches in a mile. 775 

Bethney: You did 24 × 60? 776 

Courtney: Yeah. 777 

Bethney: Where did you get the 60? 778 

Courtney: Seconds in a minute. And the 24 is hours in a day. Wait… [Teacher adds 779 

units to the 24 × 60 on the board from earlier] 780 
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Bethney: I thought it was minutes in an hour [Teacher adds alternate unit to 60]. So, 24 781 

× 60 is how many minutes in a day. 782 

Courtney: Oh, so I have to times that by 60 again. 783 

Teacher: So, Courtney, now it sounds like you think you could do 24 × 60 and then 784 

multiply by 60 again? [scribes (24 × 60) × 60 on board]. Can somebody else help me 785 

with units on these? What quantity is each of these numbers representing? 786 

Cameron: The 24 is hours per day, and the first 60 is minutes per hour. 787 

Michael: So, the thing in parentheses is minutes per day. And then the second 60 is 788 

seconds per minute. 789 

The discussion continues, exploring several ways that students computed and 790 

estimated 24 hours/day × 60 minutes/hour × 60 seconds/minute and 5,280 feet/mile × 791 

12 inches/foot. After several methods had been compared and connected, and students 792 

seemed to agree (with justification) that there are more seconds in a day than inches in 793 

a mile, the teacher added to the problem statement: 794 

Teacher: What if I add this to the problem? [scribes on board “or breaths in a typical 795 

human lifetime?”] 796 

After more wait time and a repeat of the finger routine, the teacher selects a student 797 

displaying three fingers, who hasn’t already participated: 798 

Teacher: Ji-U, can you describe part of your approach? 799 

Ji-U: I counted while I breathed, and decided that a breath takes about four seconds. 800 

Teacher: Who else did something to decide how long a breath takes? [most students 801 

raise hand] How long did you estimate? [chorus of four seconds, five seconds, six 802 

seconds] 803 

The conversation continues with students adapting strategies from earlier, including: 804 
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● I searched and found to use 79 years for average lifespan 805 

● Approximated number of seconds in a life, using earlier calculation of 806 

seconds/year, then divided by five seconds/breath 807 

● Replaced 60 seconds/minute in earlier calculation with 15 breaths/minute to get 808 

number of breaths in a year since I thought each breath was four seconds 809 

● Realized that 24 × 60 × 15 × 79 has to be much bigger than 24 × 60 × 60 since 810 

15 × 79 is more than 60 811 

● So, there are more breaths in a 79-year human life! 812 

The teacher concludes this final number talk in the string by asking students to think 813 

about and then share with a neighbor some descriptions of what they learned or noticed 814 

during the talk. Then a few students share something interesting their partner noticed, 815 

while the teacher highlights strategies that involve significant use of place value 816 

structure, others which make use of rounding with an explanation of the effect of the 817 

rounding, and others which compare products that share factors by comparing the other 818 

factors. 819 

The number string offered students the opportunity to notice their own errors without the 820 

teacher’s evaluation. As students made sense of the problems in multiple ways, they 821 

reflected on their own thinking, made connections, and revised their own thinking. 822 

Rather than positioning the student as lacking in mathematical competence, the number 823 

string positioned Courtney’s error as an invitation for further sense-making, and as a 824 

normal part of doing mathematics (UL DP3). The teacher highlighted strategies which 825 

made significant use of structure of numbers and of operations. 826 

Discovering regularity in repeated reasoning and structure 827 

Students at the middle level may build on their knowledge of place value structure and 828 

expand their use of structures, properties of operations, and attributes about shapes to 829 

make conjectures and solve problems. For example, middle-school students might draw 830 

on tables of equivalent ratios to conjecture about underlying multiplicative relationships. 831 
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Abstracting and generalizing from observed regularity and structure 832 

Students might notice during a mathematical discussion that interior angle sums 833 

regularly increase in relation to the number of sides in a polygon and use this repeated 834 

reasoning to conjecture a rule for the sum of interior angles in any polygon. In a 835 

Compare and Connect activity (UL MLR7; CA ELD I.A.3, I.B.8, II.B.5, II.C.7), students 836 

compare and contrast two mathematical representations (e.g., place value blocks, 837 

number line, numeral, words, fraction blocks) or two solution strategies together (e.g., 838 

finding the eleventh tile pattern number recursively—”there were four more tiles each 839 

time, so I just added four to the four starting tiles, ten times”—compared to noticing a 840 

relationship between the figure number and the number of tiles—“I noticed that each 841 

side is always one more than the figure number, so I did four times the figure number 842 

plus one. And then I had to take away four because I counted the corners twice.”). As a 843 

whole class, students might address the following questions: 844 

● Why did these two different-looking strategies lead to the same results? 845 

● How do these two different-looking visuals represent the same idea? 846 

● Why did these two similar-looking strategies lead to different results? 847 

● How do these two similar-looking visuals represent different ideas? 848 

The reference (Inside Mathematics, n.d.) includes a grade-eight illustration (with video) 849 

of SMP.7 (Look for and make use of structure) from the South San Francisco Unified 850 

School District. 851 

 852 

It illustrates students noticing mathematical structure in a concrete context—namely, 853 

water flowing in a closed system from one container into another. After observing the 854 

relationship between the two quantities (the water level in each container), they note 855 

constant rates of change and starting value. Students then apply the structure they 856 
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discover, in order to recognize graphs corresponding to different systems—evidence of 857 

abstracting. Teacher moves that support their investigation include modeling of 858 

academic language, building on and connecting student ideas, restating student ideas, 859 

and more. 860 

The Education Development Center (2016) has built student dialogue snapshots to 861 

illustrate the SMPs. The grade 6–7 example, Consecutive Sums, illustrates students 862 

working on the problem “in how many ways can a number be written as a sum of 863 

consecutive positive integers?” They work many examples, notice a pattern to their 864 

calculations, and connect that pattern to some structure of the numbers they are 865 

working with. They are then able to generalize that structure and develop a general 866 

strategy for writing integers as sums of consecutive integers. 867 

Reasoning and communicating to share and justify 868 

Part of constructing mathematical arguments includes understanding and using 869 

previously established mathematical assumptions, definitions, and results. Students 870 

might conjecture that the diagonals of a parallelogram bisect each other, after having 871 

experimented with a representative selection of possible parallelograms. Like in the 872 

elementary grades, where students may conjecture about shapes and area, students at 873 

the middle-school level continue this practice with mathematical content that builds on 874 

foundational ideas. 875 

Constructing and critiquing mathematical arguments includes exploring the truth of 876 

particular conjectures through cases and counterexamples. An important use of 877 

counterexamples in middle school is the use of numerical counterexamples to identify 878 

common errors in algebraic manipulation, such as thinking that 5 – 2x is equivalent to 879 

3x. 880 

In the Youcubed summer camps for middle-school students (Youcubed, n.d.), which 881 

significantly increase achievement in a short period of time (Boaler et al., 2021), 882 

students are taught that reasoning is a crucially important part of mathematics. They are 883 

told that scientists build evidence for theories by making predictions and then 884 
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performing experiments to check their predictions; mathematicians, on the other hand, 885 

prove their claims by reasoning. Students are also told that it is important to reason well 886 

and to be convincing and there are three levels of being convincing: 1) It is easiest to 887 

convince yourself of something; 2) it is a little harder to convince a friend; and 3) the 888 

highest level of all is to convince a skeptic. Students are asked to be really convincing 889 

and also to be skeptics. An exchange between a convincer and a skeptic might include: 890 

Jackie: I think that the difference between even and odd numbers is that when you 891 

divide them into two equal groups, even numbers have no left overs and odd numbers 892 

always have 1 leftover. 893 

Soren: How do you know it’s always one left over? 894 

Jackie: Because, like, if you divide any odd number in half, like, look it—take the 895 

number five, it would be two groups of two and then one left over. Or the number seven, 896 

it would be two groups of three and then one left over. There is always one left over. 897 

Soren: Can you prove it? Maybe it just works for 5 and 7. 898 

Jackie: Well, it’s kind like, it will always be one left over because if it was two left over, 899 

they would just go in each of the groups, or if it was three left over, two would go in each 900 

of the groups. So, there’s always only one left over. 901 

In the summer camp, students loved being skeptics; and when others were presenting, 902 

they learned to ask questions of each other such as: “How do you know that works?” 903 

“Why did you use that method?” and “Can you prove it to us?” In essence, students 904 

were learning to construct viable arguments and critique the reasoning of others 905 

(SMP.3). After only 18 lessons the students improved their achievement by the 906 

equivalent of 2.8 years of school. Students related their increased achievement to the 907 

classroom environment that encouraged discussion, convincing, and skepticism 908 

(Youcubed, 2017), as illustrated by this interview with two students, TJ and José: 909 

Interviewer: So, what did it take in summer math camp to be successful? 910 

TJ: Being able to communicate with your partner as you go. 911 
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José: And being able to show visuals, not just numbers. 912 

TJ: Being able to explain things well.   913 

José: And then someone says how, or why or... 914 

TJ & José: Prove it! [laughing]. 915 

José: Uh, what, what is that called, a, um.... 916 

TJ: Skeptical question. 917 

José: Yeah, skep-, yeah, skeptic. 918 

Interviewer: And what does that mean and how does that feel? 919 

TJ: It’s fun to be. 920 

José: [laughs] 921 

Interviewer: Can you explain? 922 

TJ: Because like it helps the other person that’s not being skeptical... 923 

José: Think about the problem. 924 

TJ: Yes. For example, if Carlos said like, “This is a square,” and I’m like, “Prove it.” 925 

José: Mmm, it has all, um, it, okay, it has all even sides and all, and all the corners are 926 

ninety degrees. 927 

TJ: Why? 928 

José: ‘Cause it is. 929 

TJ: Prove it! 930 

José: It is! [laughs] 931 
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TJ: [laughs] 932 

José: I just proved it. 933 

There are many routines that help support students in being the skeptic, including tools 934 

to support English learners and others to develop the necessary language: In a 935 

“Critique, Correct, Clarify” activity (UL MLR3; CA ELD I.B.6, I.B.7, I.C.11, II.A.1, II.B.5), 936 

students are provided with teacher-made or curated ambiguous or incomplete 937 

mathematical arguments (e.g., “1/2 is the same as 3/6 because you do the same to the 938 

top and bottom” or “2 hundreds is more than 25 tens because hundreds are bigger than 939 

tens”). Students practice respectfully making sense of, critiquing, and suggesting 940 

revisions together. In a “Three Reads” activity (UL MLR6; CA ELD I.B.6, I.C.12, II.A.1, 941 

II.B.3, II.B.4), students make sense of word problems and other mathematical texts by 942 

reading a mathematical context or problem three times, focusing on: 1) the context of 943 

the situation, 2) relevant quantities (things that can be counted or measured) and the 944 

relationships between them, and 3) what mathematical questions they might ask about 945 

the context and its quantities, along with possible solution methods. 946 

Grades 9–12 Progression of SMP.3, 7, and 8 947 

High School snapshot: Number string on an open number line 948 

Big Idea: Shape, Number, and Expressions (grade 8) 949 

CA ELD: I.A.1, I.A.3, I.A.4, I.B.5, I.B.7, I.C.9, I.C.11, II.B.5, II.C.6. 950 

Early in grade 9, the teacher uses this activity to reinforce structural thinking about the 951 

real number system and to begin to establish a class culture of shared exploration, 952 

conjecture, noticing, justifying, and communicating. 953 

The teacher introduces the activity by drawing a long horizontal line on the board, with 954 

arrow heads at both ends, and placing two marks on the line, labeled a and b (with a to 955 

the left of b). 956 
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 957 

I’d like you to think about where on the line I should place a + b. Should it go to the left 958 

of a, between a and b, or to the right of b? 959 

After most students give thumbs-up in front of their chests (this signal for “I’ve got a 960 

strategy or explanation”), the teacher explores with the students and discovers that 961 

most students have tried several possible values for each variable, and concluded that 962 

a + b must be to the right of b. A few students, however, are having trouble not blurting 963 

out. The teacher calls on one of these students: 964 

Teacher: Angel, you are shaking your head. Why is that? 965 

Angel: Because –1 + 2. 966 

Quite a few students have an, “Oh, I didn’t think about that” look on their faces. After 967 

further sharing, every student generates examples for each possible placement of a + b. 968 

Finally, the teacher moves from the number talk into a more-involved team activity, 969 

asking—given specific numbers a and b—how to tell where to place a + b. The class 970 

generates these generalizations (assuming a and b are real numbers, and a < b): 971 

● If a and b are both positive, then a + b is greater than b 972 

● If a and b are both negative, then a + b is less than a 973 

● If a is negative and b is positive, then a + b is between a and b 974 

In pairs, students generate informal justifications for each of these (which are then 975 

refined whole-class using a “Stronger and Clearer Each Time” instructional routine (UL 976 

MLR1); for instance, for the third one: b is positive, so adding it to a moves to the right 977 

of a. So, a + b is greater than a. And a is negative, so adding it to b moves to the left of 978 

b. So, a + b is less than b. 979 
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The students think they are done, but the teacher assures them that their list of 980 

possibilities is incomplete. One student volunteers the idea that perhaps b could be 981 

negative and a positive; other students point out that this is impossible given the original 982 

condition that a is to the left of b on the number line. Ultimately, one pair realizes that 983 

one of a or b could be zero, and students modify their list of statements to include these 984 

possibilities. The teacher asks: “Is there anything I could add to the number line that 985 

would make it possible to answer the original question?” 986 

Students quickly agree that if they knew where zero was, they could answer the 987 

question. At the next math talk opportunity, the teacher again draws a number line with 988 

just a and b marked on it as before, and asks students this time to think about where 989 

a∙b should go. After wait time and thumbs, the question is: “What different kinds of 990 

numbers do you expect to matter?” 991 

Students discuss in pairs, and most believe that it matters whether a and b are positive 992 

or negative. Some share examples: –2 ∙ –4 is greater than both –2 and –4; –3 ∙ 5 is 993 

less than both factors. A few pairs consider what happens if one factor is zero. 994 

After these considerations are offered and recorded, the teacher asks: 995 

So, if I tell you where zero is, you think you can place a ∙ b on the line? 996 

Many students say yes or nod; nobody disagrees. The teacher places zero on the 997 

number line to the left of a, and invites pairs of students to formulate statements about 998 

the relationship of a ∙ b to a and b, along the lines of the previous session’s statements 999 

about addition. Most pairs do not consider non-integer values for a and b, and generate 1000 

statements such as: 1001 

● If a and b are both positive, then a ∙ b is greater than b. 1002 

Some pairs have noticed that if a = 1, then the above statement is not true; the class 1003 

modifies the statement to address this case (either by excluding a = 1 or by adding “or 1004 
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equal to” to the conclusion). If no pairs consider the possibility of a between 0 and 1, the 1005 

teacher might prompt: 1006 

There are some types of numbers I’m worried about that we haven’t considered yet. 1007 

This quickly leads students to consider fractions and decimal numbers less than one, 1008 

and breaks most of the students’ conjectures. After considerably more work, they 1009 

generate and justify claims about the (relative) placement of a ∙ b that require 1010 

knowledge of the placement of –1, 0, and 1 on the number line. 1011 

The investigation continues in future classes with consideration of division. 1012 

Students’ work in this number string leads to a significant investigation of statements 1013 

that can be made and justified about the relative locations on the number line of a, b, 1014 

and a + b, a ∙ b, a – b, or a ÷ b. 1015 

Notice several important features of this number string (leading to extended 1016 

investigation): The number line is a familiar mathematical representation that can be 1017 

explored to a great depth. Students easily generate their own examples to engage in 1018 

wondering about the posed questions, and these examples lead to tempting 1019 

generalizations (conjectures). Some of those generalizations turn out to be false, forcing 1020 

students to examine a broader set of examples and to look for structure to explain why 1021 

they are false and how to fix them. Different generalizations will arise in different student 1022 

teams, leading to a need to justify and to critique others’ arguments. 1023 

In high school, students build on their earlier experiences in developing their inclination 1024 

and ability to explore, discover, generalize and abstract, and argue. It is important that 1025 

high-school teachers understand when designing student activities that the SMPs are 1026 

as important as the content standards and must be developed together. The University 1027 

of California, California State Universities, and California Community Colleges have a 1028 

joint Statement on Competencies in Mathematics Expected of Entering College 1029 

Students (ICAS, 2013) makes this clear, with expectations for students such as: 1030 
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“A view that mathematics makes sense—students should perceive mathematics as a 1031 

way of understanding, not as a sequence of algorithms to be memorized and applied.” 1032 

(3) 1033 

“…students should be able to find patterns, make conjectures, and test those 1034 

conjectures; they should recognize that abstraction and generalization are important 1035 

sources of the power of mathematics; they should understand that mathematical 1036 

structures are useful as representations of phenomena in the physical world...” (3) 1037 

“Taken together the Standards of Mathematical Practice should be viewed as an 1038 

integrated whole where each component should be visible in every unit of instruction.” 1039 

(7) 1040 

Exploring authentic mathematical contexts 1041 

Authentic: An authentic problem, activity, or context is one in which students 1042 

investigate or struggle with situations or questions about which they actually wonder 1043 

(from Chapter 1: Introduction). 1044 

By high school, students have a wide array of contexts available for exploration. They 1045 

continue to explore non-mathematical contexts—in the real world, in puzzles, etc. 1046 

Chapter 5 addresses one set of tools for exploring such contexts, and mathematical 1047 

modeling represents another (overlapping) set. Often, data and modeling approaches 1048 

yield mathematical contexts which then can be explored in the manner discussed here. 1049 

SMPs 7 and 8 afford opportunities to explore mathematical contexts and situations. 1050 

Numerical patterns, geometry, and place value-based structure in the early grades, 1051 

supplemented by structure and properties of operations in upper elementary and middle 1052 

school, expand in high school to focus on algebraic, statistical, and geometric structure 1053 

and repeated reasoning. 1054 

Important objects in algebraic settings include variables (letters or other symbols 1055 

representing arbitrary elements of some specified set of numbers; distinct from 1056 

unknowns and constants), graphs (often but not always graphs of functions), equations, 1057 
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expressions, and functions (often given by algebraic expressions—formulas—or implied 1058 

by tables or graphs). 1059 

One very important skill in working with functions is to move fluently between 1060 

contextual, graphical, symbolic, and numerical (e.g., table of values) representations of 1061 

a function. Thus, activities that induce a need to switch representations are crucial (UL 1062 

DP4). The exercise of moving from a formula (symbolic representation) to a graph is 1063 

vastly overrepresented in most students’ experience, often via sample values 1064 

(numerical representation) and connecting dots. Examples of other pairings are 1065 

described here. 1066 

An engaging and important way to introduce patterns, expressions and functions, is 1067 

through the context of visual or physical patterns (an easy-to-understand context). 1068 

Students can first be asked to describe the growth of such a pattern with words (CA 1069 

ELD I.C.9), and then move to symbolic representations. In this way, students can learn 1070 

that algebra is a useful tool for describing the patterns in the world and for 1071 

communication. Note the examples below showing patterns for this type of work: 1072 

Example 1: 1073 

Shapes task: How do you see the shape growing? 1074 

 1075 
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Source: Mathematics Education Collaborative, n.d. 1076 

Example 2: 1077 

 1078 

  1079 
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 1080 

“Guess my rule” games (with student-generated sequences) require students to attempt 1081 

to move from numerical representations to formulas. Students often can find a recursive 1082 

formula first; “find the 100th term”-type questions force an attempt to move to a formula 1083 

in terms of the sequence number. It is important that students have some experience 1084 

with “guess my rule” games whose rule does not match the most obvious formula, as 1085 

any finite set of initial values cannot determine an infinite sequence. As an example, the 1086 

sequence 1, 2, 4, 8 is generated nicely by the function 1087 

; the next term is 40, not 16! However, in 1088 

many instances (including most applications) the “simplest” rule that fits the given data 1089 

is a good one to explore first. 1090 

In the other direction, “build this graph” activities require student teams to try to build 1091 

given graphs (perhaps visually modeling real-world data) from graphs of well-1092 

understood “simple” functions—perhaps monomials such as , perhaps also  1093 

and , or whatever set of “parent” functions is already understood. The graph to the 1094 

right contains the graphs of  and , together with their sum 1095 

. This type of decomposition of a (graph of a) function is very 1096 
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important in many applied settings, in which (for example) different causal factors might 1097 

act on very different time scales. 1098 

Discovering regularity in repeated reasoning and structure 1099 

To explore a context with an eye for algebraic structure is to consider the parts that 1100 

make up or might make up an algebraic object such as a function, visual representation, 1101 

graph, expression, or equation, and to try to build some understanding of the object as a 1102 

whole from knowledge about its parts. Noticing regularity in repeated reasoning in an 1103 

algebraic context often leads to discoveries that similar reasoning is required for 1104 

different parameter values (e.g., comparing the processes of transforming the graph of 1105 

 into the graphs for the functions , , and , leading to general 1106 

statements about graphing functions of the form ). 1107 

 1108 

Source: Wikimedia Commons, 2014. 1109 

In a geometric context, structural exploration (SMP.7) examines the relationships 1110 

between objects and their parts: polyhedra and their faces, edges, and vertices; circles 1111 



 

48 

and their radii, perimeters, and areas; areas in the plane and their bounding curves. 1112 

Repeated reasoning occurs when exploring the sum of interior angles for polygons with 1113 

different numbers of sides, discovering Euler’s formula V – E + F = 2 (see figure), 1114 

exploring possible tilings of the plane with regular polygons, and more. 1115 

For instance, a “guess my rule” game (for the sequence –6, –13, –26, –45, ...), followed 1116 

by “predict the 100th number in the sequence,” can lead to a rich exploration of 1117 

quadratics and the meaning and impact of the quadratic, linear, and constant terms—1118 

and eventually to the quadratic function . Carefully-designed 1119 

prompts and/or a series of “guess my rule” constraints can help student teams discover 1120 

the relationship between the coefficient of  and the constant second difference of a 1121 

sequence (here, the constant second difference of the sequence is –6, so the coefficient 1122 

of  is –3). Further exploration, perhaps graphical, can uncover the idea of finding a 1123 

linear function to add to  so that the sum generates the original sequence for 1124 

whole-number inputs. 1125 
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.  1126 

Exploring the general behavior of  could be motivated by comparing sequences, 1127 

using questions like “which sequence will have a higher value in the long run? How do 1128 

you know?” 1129 

To try to predict the general behavior (that is, the shape of the graph) of , student 1130 

teams should consider the known shape of the graph of , explore what 1131 

happens to the graph if they multiply every output value by 3 and then take the opposite 1132 
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of every output, then perhaps sketch the two functions  and  both 1133 

on a plane and add the output values for many sample values for , to get a sense for 1134 

the shape of . Sharing strategies, and being accountable for 1135 

understanding and using other teams’ strategies, will ensure that students have ample 1136 

opportunities to connect across approaches and be prepared to notice patterns and 1137 

repeated reasoning when tackling similar problems. 1138 

It is important to note that producing by hand a reasonably accurate graph of a function 1139 

given by a formula is not a goal in its own right. Instead, it can be a means towards the 1140 

end of deeply and flexibly understanding the meaning of a graph and the relationship 1141 

between a function, its graph, the points on the graph, and the context that generated 1142 

the function. 1143 

Every student should also have easy access and frequent opportunities to use 1144 

computer algebra systems to graph functions, thus focusing mental energy on 1145 

interpretation and connection. 1146 

Playing the “guess my rule” game several times (perhaps with a constraint of constant 1147 

second differences) would have students noticing the similarity in what they are having 1148 

to do each time. The point is not to become fast at sketching the graph of a quadratic, 1149 

but to first notice, and then understand, the ways in which the different parts of the 1150 

formula can be considered separately to help understand the whole. In other words, 1151 

noticing repeated reasoning leads to the revealing of structure. 1152 
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 1153 

The “build this graph” example in the previous section may seem at first glance to be 1154 

more difficult than understanding the structure of , since the parts are not 1155 

necessarily as apparent as they are in the formula for . However, consider the 1156 

graph to the right. If asked to describe the behavior of this function, students will offer 1157 

ideas like “as  gets bigger, the function values generally get bigger; it wiggles up and 1158 

down and generally goes up.” A student team offering such a description has noted the 1159 

two “parts” of this function’s behavior, and thus discovered some of its structure. They 1160 

are well on their way to using graphing software in identifying  as a 1161 

likely formula for this function. 1162 

Abstracting and generalizing from observed regularity and structure 1163 

Observing repetition in reasoning naturally leads to questions such as, “Do we have to 1164 

keep doing the same thing with different numbers?” and, “What is the largest set of 1165 

examples that we could apply this reasoning to?” Exploring either question involves 1166 

examining structure. Students abstract an argument when they phrase it in terms of 1167 

properties which might be shared by a number of objects or situations—thus paying 1168 

attention to the structure of the objects or situations. They generalize when they extend 1169 

an observation or known property to a larger class. 1170 
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Several rounds of explorations such as the “guess my rule” example above could lead 1171 

to any of the following abstractions and generalizations: 1172 

● The quadratic term in a quadratic function always dominates over time; that is, 1173 

graphs of functions of the form , where a, b, and c are 1174 

real numbers, always have the shape of a parabola, and the parabola opens up 1175 

or down depending on the sign of . 1176 

● If  is as above and you compare , and , then the difference 1177 

 is  more than the difference  (generalizing 1178 

to non-integer “second differences”). 1179 

● To determine a quadratic function, you need to know at least four points on the 1180 

graph because with just three you cannot decide whether the second differences 1181 

are constant (note that this conjecture is not true, which means it raises a good 1182 

opportunity for exploring possible justifications or critiques). 1183 

● When adding two functions, the steepness (slope) of the new function at each 1184 

input value is also the sum of the two slopes (at that input) of the functions being 1185 

added. 1186 

● When comparing two quadratics, the one with the faster-growing quadratic term 1187 

(the larger ) always will be larger for large enough values of x, no matter what 1188 

the linear and constant terms are. 1189 

● When comparing two polynomials, the one with the faster-growing quadratic term 1190 

always wins in the long run (generalizing to polynomials from the smaller class of 1191 

quadratics). 1192 

The “build this function” tasks above might lead to abstractions that are more along the 1193 

lines of heuristics for understanding the structure of functions presented graphically: 1194 

● When trying to break down a graph, look at the largest-scale pattern you can 1195 

see. If the graph generally goes in a straight line, like the  1196 

example, try to find that straight line and subtract it out. 1197 

● When trying to break down a graph, look at the most important pattern—the one 1198 

that causes the biggest ups and/or downs (like the parabolic shape of the 1199 
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 example). Try to figure out the shape of that pattern, and 1200 

subtract it out. 1201 

● If there is a periodic up-and-down in the graph, there’s probably a  or 1202 

 in the formula. 1203 

Reasoning and communicating to share and justify 1204 

In many respects, mathematical knowledge and content understanding is developed 1205 

and demonstrated socially; it is of little value to find a correct “solution” to a problem 1206 

without the ability to communicate to others the validity and meaning of that solution, 1207 

and thinking can be clarified through exchange with others. SMP.3 includes these 1208 

aspects of the development of arguments: “They justify their conclusions, communicate 1209 

them to others, and respond to the arguments of others.” In order to create an 1210 

environment that makes mathematical practices such as SMP.3 accessible to all 1211 

students, teachers should develop routines with students that support being able to 1212 

communicate their thoughts and ideas, as well as work socially in a classroom of mixed 1213 

language and math knowledge. Chapter 2 offers examples of such routines, including 1214 

reflective discussions, peer revoicing routines, as well as teacher moves that support 1215 

the creation of a mixed language mathematics community. It is therefore of upmost 1216 

importance that teachers create environments and routines that provide access for all 1217 

students to communicate their thoughts and ideas with each other and with the teacher. 1218 

The Math Language Routines, developed by Understanding Language at the Stanford 1219 

Center for Assessment, Learning, and Equity, provide teachers with a set of robust 1220 

routines to foster student participation while building math language, practices, and 1221 

content simultaneously. 1222 

An important (implicit) aspect of SMP.3 is a recognition that the authority in 1223 

mathematics lies within mathematical reasoning itself. Students come to own their 1224 

understanding through constructing and critiquing arguments, and through this process 1225 

increase their confidence and their sense of agency in mathematics. Classroom 1226 

routines in which students must justify—or at least give evidence for—their abstractions 1227 

or generalizations, and in which other students are responsible for questioning 1228 
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justifications and evidence, help to build the “am I convinced?” and “could I convince a 1229 

reasonable skeptic?” meta-thinking that is at the heart of SMP.3. An example would be 1230 

a mathematical implementation of the classroom routine “Claim, Evidence, and 1231 

Reasoning (CER),” which is popular in science and writing instruction (McNeil and 1232 

Martin, 2011). Here, the different elements of an argument when investigating a 1233 

problem are: 1234 

● Stating a claim 1235 

● Giving evidence for that claim 1236 

● Producing mathematical reasoning to support the claim 1237 

It is important to note that the mathematical reasoning here is of a different sort than 1238 

scientific reasoning when CER is used in science: In science, the reasoning is for the 1239 

purpose of connecting the evidence to the claim, explaining why the evidence supports 1240 

the claim. On the other hand, the mathematical reasoning in the CER routine is 1241 

expected to explain why (making use of structure) something is true in general (thus 1242 

also explaining why the examples used as evidence are valid. 1243 

It is useful to name “giving evidence” and “producing reasoning” as separate processes, 1244 

to distinguish between the noticing of pattern and structure (evidence) and the 1245 

reasoning to support a general claim. For instance, in exploring a growth pattern, 1246 

students might notice that the sum of three consecutive integers always seems to be 1247 

divisible by three, and formulate that as a claim: “I think that whenever you add three 1248 

numbers in a row, the answer is always a multiple of three.” When it’s clear the student 1249 

means three consecutive integers, other students might check additional examples and 1250 

contribute additional evidence. But the reasoning step requires something more:  A 1251 

numerical fluency argument (“If you take away one from the third number and add it to 1252 

the first number, then you just have three times the middle number”), an algebraic 1253 

argument (such as “if a is an integer, then ”), or 1254 

some other general argument. 1255 

Carefully chosen number talks—well known in the elementary-math classroom—can be 1256 

implemented in high school as a way to enable students to compare ideas and 1257 



 

55 

approaches with others in a low-stakes environment. They help to build SMP.1 (Make 1258 

sense of problems and persevere in solving them) in addition to SMP.3. Well-chosen 1259 

routines or tasks, such as number strings, can help build SMP.7 and SMP.8 by building 1260 

from specific examples to thinking in terms of structure (abstraction) or larger classes 1261 

(generalization). 1262 

For example (see the snapshot at the beginning of this section) open number lines 1263 

(blank, with no numbers marked), used with multiplication or division, can provide 1264 

problems for number talks or strings that lead often to over-generalization—a great 1265 

thing to happen, as it creates skepticism and forces a re-evaluation of evidence and a 1266 

search for convincing justification. 1267 

Additional types of activities can create in students the need to reason and 1268 

communicate as ways to support explanations and justifications. These include 1269 

producing reports, videos, or materials to model for others (for example, to parents or to 1270 

the next-younger class); prediction and estimation activities; and creating contexts. The 1271 

last—creating real-life or puzzle-based contexts generating given mathematics such as 1272 

a given function type—help to cultivate meta-thinking about structure (what are the parts 1273 

of a quadratic function and how might I recreate them in a puzzle or find them in a real-1274 

life setting) and to develop a way of seeing the world through the lens of mathematics. 1275 

The CA CCSSM identify two particular proof methods in SMP.3.1 (a high school-only 1276 

addition to SMP.3): Proof by contradiction and proof by induction. The logic of proof by 1277 

contradiction is straightforward to students: “No, that can’t be, because if it was true, 1278 

then….” The standard high school examples are proofs that  is irrational, and that 1279 

there are infinitely many prime integers. These are both clear examples. Although the 1280 

second of these two does not actually require a proof by contradiction, the proof below 1281 

is most easily understood when worked out through the contradiction framework: “What 1282 

would happen if there were only finitely many primes?” 1283 

The difficulty is to embed such proofs in a context that prompts a wondering, a need to 1284 

know, on the part of students; and then to uncover the steps of the argument in such a 1285 

way so as not to seem pulled out of thin air. Some approaches attempt to motivate with 1286 
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historical contexts, others with patterns. For example, suppose the class already has 1287 

established that every natural number greater than 1 is either prime or is a product of 1288 

two or more prime factors. “Maybe 2, 3, 5, 7, 11, and 13 are all the primes we need to 1289 

make all integers! No? Well, maybe if we add 17 to the set we have them all?” When 1290 

students get tired of the repeated reasoning of finding an integer that is not a product of 1291 

the given primes, either students or the teacher can ask whether there might always be 1292 

a way of finding an integer that is not a product of integers in the given finite set. This 1293 

gives an opening for a proof by contradiction: Let’s pretend (assume) that there are only 1294 

finitely many primes—let’s say n of them. Why don’t we call them . Can 1295 

you write down an expression for a natural number that is not divisible by any of these 1296 

primes? To eventually arrive at a proof requires constructing an integer that can’t 1297 

possibly be divisible by any of —Euclid’s choice (call it ) was the product of 1298 

all of them, plus 1: . Once an argument is found that  is not 1299 

divisible by any of , then since  must be either a prime or a product of 2 1300 

or more prime factors that are not in the list , we have found a 1301 

contradiction to our initial assumption that  contains all primes. Thus, the 1302 

list of primes cannot be finite. 1303 

The logic of proof by induction is also straightforward when described informally: The 1304 

first case is true, and whenever one case is true, the next one is true as well. Thus, the 1305 

chain goes on forever. Such chains of statements, and wonder about whether they go 1306 

on forever, might be easier to motivate from patterns than proof by contradiction. For 1307 

instance, students might notice, in the context of exploring quadratic functions, that 1308 

whenever they substitute an odd integer in for x in the function , they obtain 1309 

an output that is a multiple of 8. This naturally leads to the questions, “Is this really true 1310 

for all odd integers x?” and, “Could I use the fact that it’s true for  to show that it’s 1311 

true for ?” The formalism of representing “the next odd number” after x as  1312 

follows relatively naturally, and “using one case to prove the next” can proceed. This 1313 

example should be accompanied by the question, “Why doesn’t the argument work for 1314 

even integers?” 1315 
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As described here, “proof” in high school does not originate with purely mathematical 1316 

claims put forth by curriculum or by the teacher (“Prove that alternate interior angles are 1317 

congruent”), nor with formal axioms and rules of logic. Rather, proof originates, like all 1318 

mathematics, with a need to understand—in the case of proof, a need to understand 1319 

why an observed phenomenon is true and that it is true for a defined range of cases. It 1320 

is not enough that the curriculum writer or the teacher understand, and wishes for 1321 

students to understand. The need to understand—and to understand why—must be 1322 

authentic to students for learning to be deep and lasting. Thus, it is important that 1323 

students’ experiences with constructing and critiquing arguments (SMP.3)—including 1324 

their experiences with formal proof—be embedded as much as possible within a 1325 

process beginning with wonder about a context and ending with a social and intellectual 1326 

need to understand and justify: 1327 

1. Exploring authentic mathematical contexts 1328 

2. Discovering regularity in repeated reasoning and structure  1329 

3. Abstracting and generalizing from observed regularity and structure 1330 

4. Reasoning and communicating with and about mathematics in order to share and 1331 

justify conclusions 1332 

Conclusion 1333 

This chapter focuses on key ideas that bring the SMPs to life. The content focuses on 1334 

three interrelated practices: 1) Constructing viable arguments and critiquing the 1335 

reasoning of others; 2) Looking for and making use of structure; and 3) Looking for and 1336 

expressing regularity in repeated reasoning. By considering these practices together, 1337 

the chapter focuses on the foundations of classroom experiences that center exploring, 1338 

discovering, and reasoning with and about mathematics. While this chapter illustrates 1339 

the integration of three mathematical practices, all SMPs must be taught in an 1340 

integrated way throughout the year. This vision for teaching and learning mathematics 1341 

comes out of a several decades-long national push in mathematics education to pay 1342 

more attention to supporting K–12 students in becoming powerful users of mathematics 1343 

to help make sense of their world. 1344 
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The chapter explores the practices across the elementary-, middle-, and high-school 1345 

grade bands. Included below is an example tracing students’ as they progress with the 1346 

mathematical practices, including some ways in which contexts for learning and doing 1347 

mathematics and the practices themselves might evolve over the grades. Note that 1348 

socialization with these SMPs occurs through language, and so supports for developing 1349 

language for reasoning and interacting with mathematics and others is central to these 1350 

progressions. 1351 

Across the grades, students use everyday contexts and examples in order to explore, 1352 

discover, and reason with and about mathematics. At the early grades, everyday 1353 

contexts might come from familiar activities that children engage in at home, at school 1354 

and within their community. These contexts might include imagined play or familiar 1355 

celebrations with friends, siblings, or cousins; and familiar places such as a park, 1356 

playground, zoo, or school itself. Meaningful contexts are also those that center notions 1357 

of fairness and justice, such as issues related to the environment, social policies, or 1358 

particular problems faced in the community. As teachers better know their students and 1359 

the communities they represent and those create in classrooms, the contexts that 1360 

matter to young children come to the fore. 1361 

In the middle grades, the contexts that are relevant to students continue to include—but 1362 

increasingly go beyond—local, everyday activities and interactions. Middle-school 1363 

students might begin to explore publicly available datasets on current events of interest, 1364 

use familiar digital tools to explore the mathematics around them, and explore 1365 

mathematical topics within everyday contexts like purchasing snacks with friends, 1366 

playing or watching sports, or saving money. By the time they reach high school, 1367 

students have acquired a wide array of contexts to explore, increasingly understanding 1368 

society and the world around them through explorations in data, number, and space. 1369 

As noted in the CA CCSSM, the SMPs span the entirety of K–12. They develop in 1370 

relation to progressions in mathematics content. At the elementary level, students work 1371 

with numbers with which they are currently familiar, and begin to explore the structure of 1372 

place value, patterns in the base-10 number system (such as even and odd numbers), 1373 
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and mathematical relationships (such as different ways to decompose numbers or 1374 

relationships between addition and multiplication). Through these explorations, young 1375 

students conjecture, explain, express agreement and disagreement, and come to make 1376 

sense of data, number, and shapes. 1377 

Students in middle school build on these early experiences to deepen their interactions 1378 

with mathematics and with others as they do mathematics together. During the 1379 

elementary grades, students typically draw on contexts and on concrete manipulatives 1380 

and representations in order to engage in mathematical reasoning and argumentation. 1381 

At the middle-school level, students continue to reason with such concrete referents, 1382 

and also begin to draw on symbolic representations (such as expressions and 1383 

equations), graphs, and other representations which have become familiar enough that 1384 

students experience them as concrete. Middle-school students deepen their 1385 

opportunities for sense-making as they move into ratios and proportional relationships, 1386 

expressions and equations, geometric reasoning, and data. 1387 

In high school, students continue to build on earlier experiences as they make sense of 1388 

functions and ways of representing functions, relationships between geometric objects 1389 

and their parts, and data arising in contexts of interest. As students grow through years 1390 

of making sense of and communicating about mathematics with one another and the 1391 

teacher, the same practices that cut across grades K–12 emerge at developmentally 1392 

and mathematically appropriate levels. 1393 
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