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Note to reader: The use of the non-binary, singular pronouns they, them, their, theirs,

themself, and themselves in this framework is intentional.

Introduction: Mathematical Practices
California schools must prepare students to be powerful users of mathematics to

understand and affect their worlds, in whatever life path they embark upon. This charge

is built on the California Common Core State Standards for Mathematics (CA CCSSM),

which contain two types of standards. The content standards might be more familiar to

many educators; they describe for each grade the mathematical expertise, skills, and

knowledge that students should develop. The criteria to teach and measure math

practices, the Standards for Mathematical Practice (SMPs), describe the ways of

interacting with mathematics individually and collaboratively that make up the practices

of the discipline. Eight SMPs are included in the CA CCSSM.

Habits of Mind and Habits of Interaction
The past several decades in mathematics education have included a national push to

focus on both the habits of mind and habits of interaction that students need in order to

become powerful users of mathematics and better interpret and understand their world.

Habits of mind include making or using mathematical representations, attending to

mathematical structure, persevering in solving problems, and reasoning. Reasoning

includes the processes of inferencing, conjecturing, generalizing, exemplifying, proving,

arguing, and convincing (Jeannotte & Kieran, 2017).

Habits of interaction are linguistic processes and include such things as explaining

one’s thinking, justifying a solution, making sense of the thinking of others, and raising

worthy questions for discussion. Both kinds of habits are fundamentally tied to language
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development and linguistic processes. Supporting reasoning processes and kinds of

interactions involve supporting the development of language as students engage in

these disciplinary practices. By the time California’s students graduate from high school,

they should be comfortable engaging in many mathematical practices, including those

that are central to the SMPs highlighted in this chapter: exploration, discovery,

description, explanation, generalization, and justification (including proof).

This framework situates mathematics learning in the context of investigations that allow

students to experience mathematics as a set of lenses for understanding, explaining,

predicting, and affecting authentic contexts (as defined in Chapter 1). The capacity to

use mathematics to understand the world influences every aspect of life, from

advocating for just policies in our communities to outlining personal finances to

completing everyday tasks like cooking and gardening. For example, an understanding

of fractions, ratios, and percentages is crucial to questions of fairness and justice in

areas as diverse as incarceration, environmental and racial justice, and housing policy.

Being able to reason with and about the mathematics imbedded in real-world situations

(using ideas such as recursion, shape of curves, and rate of change) empowers

Californians to make important and consequential decisions not only for their own lives,

but also for the lives in their communities. Making sense of the mathematics underlying

data-based claims about the benefits or dangers of particular foods, for example,

empowers everyday decision making. This practice of reasoning about the world using

data, described in Chapter 5, is another important example.

The ability to reason is also a foundational skill for understanding the impact of

stereotypes. Humans are quick to generalize from a small number of examples, and to

construct causal stories to explain observed phenomena. In many situations, this

tendency serves us well: people learn from very few examples that a stove might be

painfully hot, and a Copernican model of a sun-centered universe enabled astronomers

to predict the movement in the sky of planets and stars with reasonable accuracy.
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There are, however, many situations in which humans are poorly served by such

generalizations, especially those that lead to inequities or the unjust treatment of people

based on characteristics that call forth internal stories about expected capacities,

motivation, behavior, or background. Such emotional stories are often based on little

evidence and are socially buttressed, and action based on these stories does great

harm to the communities and the individual students that comprise the schools they

represent. This tendency to assume, without adequate justification, that generalizations

are valid is reinforced by many poorly-constructed math assessment questions, e.g.,

“What is the next term in this sequence: 1, 2, 4, 8, …?” instead of the more informative

and reasoning-reinforcing “What rule or pattern might generate a sequence that begins

1, 2, 4, 8, ...? According to your rule, what is the next term?” Mathematics education

must prepare students to use mathematics to comprehend and respond to their world,

deepening their understanding of mathematics and of the issues that impact their lives.

The goal is that students learn to “use mathematics to examine… various phenomena

both in one’s immediate life and in the broader social world and to identify relationships

and make connections between them” (Gutstein, 2003, p. 45).

Instructional Design: Content Connections, Drivers of Investigation,

and Mathematical Practices
As described in Chapter 1, instructional activities should be motivated by an

investigation designed to elicit questions about authentic contexts; the mathematics

content should help to answer those question,; and students must engage in the target

SMP in order to engage in the target content in the investigation’s context.

Thus, content (falling broadly in four “Content Connections,” or “CCs”) should be

developed through investigation of questions in authentic contexts; these investigations

will naturally fall into one or more of the following Drivers of Investigation (DI). The DIs

serve a purpose similar to that of the Crosscutting Concepts in the California Next

Generation Science Standards, as unifying reasons that both elicit curiosity and provide

the motivation for deeply engaging with authentic mathematics. The aim of the Drivers
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of Investigation is to ensure that there is always a reason to care about mathematical

work, and that investigations allow students to make sense, predict, and/or affect the

world. The DIs are:

● DI1: Making Sense of the World (Understand and Explain)

● DI2: Predicting What Could Happen (Predict)

● DI3: Impacting the Future (Affect)

The four Content Connections described in the framework organize content and provide

mathematical coherence through the grades:

● CC1: Communicating Stories with Data

● CC2: Exploring Changing Quantities

● CC3: Taking Wholes Apart, Putting Parts Together

● CC4: Discovering Shape and Space

The three dimensions of Content Connections, the Standards for Mathematical Practice,

and the Drivers of Investigation can guide instructional design. For example, students

can make sense of the world (DI1) by exploring changing quantities (CC2) through

classroom discussions wherein students have opportunities to construct viable

arguments and critique the reasoning of others (SMP.3).

In this chapter we focus primarily on a cluster of three SMPs. Content Connections and

Drivers of Investigation frame the organization of the grade-band chapters (Chapters

6–8).

Deeper Practice, or More Content Topics?
Mastering high-school level mathematics content—to acquire the knowledge needed to

understand the world—can empower students who will continue on to tertiary

institutions where they will be expected to engage in career- and college-level

mathematics. Despite this, there is a well-documented, persistent disconnect between

high school mathematics teachers’ beliefs about what is important for their students to
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succeed in college, and what college instructors rate as most important for incoming

students’ success.

The ACT’s National Curriculum Survey (widely administered every three to five years)

reported in 2006 that “High school mathematics teachers gave more advanced topics

greater importance than did their postsecondary counterparts. In contrast,

postsecondary…mathematics instructors rated a rigorous understanding of fundamental

underlying mathematics skills and processes as being more important than exposure to

more advanced mathematics topics” (ACT, Inc., 2007, p. 5). Six years later, the same

discrepancy was reflected in the fact that 19 of the 20 content topics rated by college

faculty as most important for incoming students are typically taught in ninth grade or

earlier (ACT, Inc., 2013, p. 6).

Start sidebar

Ranking of the 20 Content Topics Rated Most Important as Prerequisites by Instructors

of Credit-Bearing First-Year College Mathematics Courses (ACT, Inc., 2013, p. 7)

Rank Topic

1. Evaluate algebraic expressions

2. Perform addition, subtraction, multiplication, and division on signed rational
numbers

3. Solve linear equations in one variable

4. Solve multistep arithmetic problems

5. Locate points on the number line

6. Perform operations (add, subtract, multiply) on linear expressions

7. Find the slope of a line

8. Find equivalent fractions

9. Find and use multiples and factors
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10.Perform operations (add, subtract, multiply) on polynomials

11. Locate points in the coordinate plane

12.Write expressions, equations, or inequalities to represent mathematical and
real-world settings

13.Evaluate functions at a given value of x

14.Graph linear equations in two variables

15.Order rational numbers

16.Determine the absolute value of rational numbers

17.Manipulate equations and inequalities to highlight a specific unknown

18.Manipulate expressions containing rational exponents

19.Solve linear inequalities in one variable

20.Solve problems using ratios and proportions

End sidebar

This misunderstanding about the types of experiences that best prepare students for

college mathematics success produces high-school graduates who enter college with a

superficial grasp of superfluous procedures and little conceptual framework. The goal is

to impart a deep but flexible procedural knowledge which helps students to understand

important concepts, and deep conceptual knowledge which helps to make sense of and

connect procedures and ideas. Clarified further, “procedural knowledge learning should

be structured in a way that emphasizes the concepts underpinning the procedures in

order for conceptual knowledge to improve concurrently” (Maciejewski & Star, 2016). In

order to equip students for success in college-level mathematics and in jobs that require

an application of mathematical skills to novel situations, the SMPs are designed to instill

habits and behaviors that reflect a deep conceptual and procedural understanding.

Unlike the content standards, the SMPs are the same for all grades K–12 (with one

addition in high school [SMP.3.1] below). As students progress through mathematical
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content, the opportunities they have to deepen their knowledge of and skills in the

SMPs should increase.

● SMP.1: Make sense of problems and persevere in solving them

● SMP.2: Reason abstractly and quantitatively

● SMP.3: Construct viable arguments and critique the reasoning of others

● SMP.4: Model with mathematics

● SMP.5: Use appropriate tools strategically

● SMP.6: Attend to precision

● SMP.7: Look for and make use of structure

● SMP.8: Look for and express regularity in repeated reasoning

Every SMP is crucial, and most worthwhile classroom mathematics activities require

engagement in each to varying degrees throughout the year.

Exploring and Reasoning With and About Mathematics: SMP.3, 7, 8
Certain curricula more clearly represent the SMPs and, as a result, this chapter

addresses the progression through the grades of a cluster of three of the SMPs,

highlighted above: Construct Viable Arguments and Critique the Reasoning of Others

(SMP.3, including the California-specific high school SMP.3.1 regarding proof); Look for

and Make Use of Structure (SMP.7); and Look for and Express Regularity in Repeated

Reasoning (SMP.8). These practices do not develop without careful attention across all

grade levels and in relation to mathematical content. In addition, these three SMPs all

require a high degree of language proficiency in order to access content knowledge and

reasoning.

The California English Language Development Standards (CA ELD Standards) describe

structures to assist in the building of the English language proficiency for English

learners. The CA ELD Standards, along with the SMPs and content standards, would

help illustrate how best to integrate language development in the lessons. For many
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students, having small groups in which students can do the investigations, critiques, and

reasoning in their native or preferred language may support and strengthen their

understanding. In designated ELD time, the language of critiquing, reasoning,

generalizing, and arguing is a space to help prepare English learners for engagement in

the SMPs and the mathematical content. The framework’s approach integrates the

three SMPs in the context of mathematical investigations to highlight ways that

mathematical practices can come together through exploration and reasoning. In

addition, these three SMPs all require a high degree of language proficiency to content

knowledge and reasoning. Looking at the CA ELD Standards to guide building the

English language proficiency for English learners along with the SMPs and content

standards would help illustrate how best to integrate language development in the

lessons. For sample mathematics lessons that integrate the SMPs with CA CCSSM and

the CA ELD Standards, see A Pathway to Equitable Math Instruction – Stride 4:

Connecting Critical Intersections. For many students, having small groups to conduct

the investigations, critiques, and reasoning in their home languages and language of

strength is another facilitative alternative delivery mode. In designated ELD time, the

language of critiquing, reasoning, generalizing and argumentation is a space to help

prepare multilingual students for engagement with the SMPs and mathematical content.

The following four processes are useful guideposts for designing mathematical

investigations that integrate multiple content and practice standards at the lesson or unit

level (see Chapters 6, 7, and 8 for more grade-level guidance on mathematical

investigations):

1. Exploring authentic mathematical contexts

2. Discovering regularity in repeated reasoning and structure

3. Abstracting and generalizing from observed regularity and structure

4. Reasoning and communicating with and about mathematics in order to develop

mathematical meaning and to share and justify conclusions
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A classroom where students are engaged in these processes might look different to a

visitor (or to the teacher!) than math classes portrayed in popular media. While these

processes focus on communication as sharing and justifying mathematical ideas,

mathematical investigations involve multiple communicative processes for connecting

and interacting with others and mathematics. Evidence of SMPs 3, 7, and 8 (among

others) might include the following:

● Students trying multiple examples and comparing (SMP.1, 7): Ex., “I tried 6; what

did you do?”

● Students challenging each other (SMP.3): Ex., “I see why you think that from

what you tried. I don’t think that always works because….”

● Predictions being shared (often these reflect early noticing of repeated reasoning

and structure, SMP.7 and SMP.8): Ex., “I think that when we try with a hexagon,

we’ll get….”

● Students justifying their predictions (SMP.3, 7, and 8): Ex., “No matter what

number we use, it will always be true that….”

In short, a classroom with evidence of SMP.3, 7, and 8 will include students using their

own understanding to reason about authentic mathematical contexts and to share that

reasoning with others.

It is important to revisit these SMPs as they appear in the CA CCSSM.

● SMP.3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions,

definitions, and previously established results in constructing arguments. They

make conjectures and build a logical progression of statements to explore the

truth of their conjectures. They are able to analyze situations by breaking them

into cases, and can recognize and use counterexamples. They justify their

conclusions, communicate them to others, and respond to the arguments of

others. They reason inductively about data, making plausible arguments that take

into account the context from which the data arose. Mathematically proficient
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students are also able to compare the effectiveness of two plausible arguments,

distinguish correct logic or reasoning from that which is flawed, and—if there is a

flaw in an argument—explain what it is. Elementary students can construct

arguments using concrete referents such as objects, drawings, diagrams, and

actions. Such arguments can make sense and be correct, even though they are

not generalized or made formal until later grades. Later, students learn to

determine domains to which an argument applies. Students at all grades can

listen or read the arguments of others, decide whether they make sense, and ask

useful questions to clarify or improve the arguments. CA 3.1 (for higher

mathematics only): Students build proofs by induction and proofs by

contradiction.

It is important to point out that neither “argument” nor “critique” has negative

connotations in this context. In the sense used here, argument is “a reason or set of

reasons given in support of an idea, action or theory,” and critique means “evaluate (a

theory or practice) in a detailed and analytical way” (Oxford, 2019). Everyday notions of

these terms can inadvertently invite students to interpret mathematics classroom

discussions as competitions for status; expressing disagreement can feel like an insult

rather than an invitation for reasoning (Langer-Osuna & Avalos, 2015).

Building a classroom culture in which students can become proficient at constructing

and critiquing arguments requires rich contexts and problems in which multiple

approaches and conclusions can arise, creating a need for generalization and

justification (see figure X below). Teaching for the development of SMPs, especially

SMP.3, includes developing classroom norms for discussions that focus on examining

the “truthiness” (i.e., validity) of the mathematical ideas themselves, rather than

evaluating the student offering ideas in what Boaler (2002, drawing on Pickering, 1995)

referred to as the “dance of agency.” According to Principles to Actions: Ensuring

Mathematical Success for All, “Effective teaching of mathematics facilitates discourse
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among students to build shared understanding of mathematical ideas by analyzing and

comparing student approaches and arguments” (NCTM, 2014, p.12).

Suggested Math Class Norms:

1. Everyone can learn math to the highest levels

2. Mistakes are valuable

3. Questions are really important

4. Math is about creativity and making sense

5. Math is about connections and communicating

6. Depth is much more important than speed

7. Math class is about learning not about performing

8. Everyone has the right to share their thinking

9. We attend to and make sense of the thinking of others

10.All cultures reflect important mathematical thinking and applications.

It is possible to prompt this culture by valuing the role of skeptic through the use of

purposeful and probing questions, removing or delaying teacher validation of reasoning

in favor of class-negotiated acceptance, and explicitly reminding students frequently that

mathematicians prove claims by reasoning (Boaler 2019). To do so, students must

experience a classroom environment where teachers and all students have the right to

share their thinking and will be supported in doing so. Further, classroom norms must

set the expectation that students respectfully attend to and make sense of the thinking

of others; this is especially important with respect to differences in mathematical ideas,

cultural experiences, and linguistic expressions.

● SMP.7: Look for and make use of structure.

Mathematically-proficient students look closely to discern a pattern or structure.

Young students, for example, might notice that three and seven more is the same

amount as seven and three more, or they may sort a collection of shapes

according to how many sides the shapes have. Later, students will see 7 × 8

equals the well-remembered 7 × 5 + 7 × 3, in preparation for learning about the
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distributive property. In the expression x2 + 9x + 14, older students can see the

14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line

in a geometric figure and can use the strategy of drawing an auxiliary line for

solving problems. They also can step back for an overview and shift perspective.

They can see complicated things, such as some algebraic expressions, as single

objects or as being composed of several objects. For example, they can see 5 –

3(x – y)2 as 5 minus a positive number times a square and use that to realize that

its value cannot be more than 5 for any real numbers x and y.

● SMP.8: Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look

both for general methods and for shortcuts. Upper elementary students might

notice when dividing 25 by 11 that they are repeating the same calculations over

and over again, and conclude they have a repeating decimal. By paying attention

to the calculation of slope as they repeatedly check whether points are on the

line through (1, 2) with slope 3, middle school students might abstract the

equation (y – 2)/(x – 1) = 3. Noticing the regularity in the way terms cancel when

expanding (x – 1)(x + 1), (x – 1)(x2 + x + 1), and (x – 1)(x3 + x2 + x + 1) might lead

them to the general formula for the sum of a geometric series. As they work to

solve a problem, mathematically proficient students maintain oversight of the

process, while attending to the details. They continually evaluate the

reasonableness of their intermediate results.

Patterns in SMP.7 might be numeric, geometric, algebraic, or a combination. Structure is

“the arrangement of and relations between the parts or elements of something complex”

(Oxford 2019). SMP.7 and SMP.8 are key to abstracting. Stepping back from concrete

objects to consider, all at the same time, a class of objects in terms of some set of

identical properties—and generalizing—extending a known result to a larger class.

Reasoning abstractly and developing, testing, and refining generalizations are essential
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components of doing mathematics, including solving problems (National Governors

Association Center for Best Practices [NGACBP], 2010).

Abstracting, Generalizing, Argumentation
Bringing all three SMPs together—abstracting, generalizing, and

argumentation—empowers teachers to use classroom discussions and other

collaborative activities where students make sense of mathematics together. Teacher

facilitation of high-quality mathematics discourse with attention to language

development is the key to unlocking these practices for students and bringing them

holistically into practice. Historically, proficiency in mathematics has been defined as an

individual, cognitive construct. However, the past three decades of mathematics

classroom research has revealed the ways in which learning and doing mathematics is

rooted in social activity (Lerman, 2000; National Academies of Sciences, Engineering,

and Medicine, 2018). Still, merely asking students to talk to each other in math class is

insufficient. The facilitation of high-quality discourse needs to be intentional, especially

with attention to language development. Assignments for student interactions that lack

intention could hinder or prevent high-quality math discourse. Intentional patterns of

grouping, such as primary language grouping, to support effective interactions and

communication is important.  Another option is to consider assigning a student to serve

as a bilingual broker for each small group of English learners and English-only students.

This student is given extra practice to provide the language support leading to

understanding by each group member and an appreciation of everyone's thinking. In the

following progressions through the grade bands, the framework illustrates ways that

students might progress in the SMPs through such classroom discourse activity, based

on thoughtful whole- and small-group activities where students access opportunities to

grapple with and discuss mathematical ideas and problems through engagement in the

SMPs—especially SMP.3, 7, and 8. Intentional patterns of grouping, such as primary

language grouping to support effective interactions and communication, can be effective

at supporting multilingual students’ engagement and access.
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Progressions in the Mathematical Practices
Young learners begin to engage with mathematical ideas through real-world contexts.

As students access domains of mathematics they increase their ability explore purely

mathematical contexts; for instance, even young learners who have become

comfortable with the natural numbers—as a context in which reasoning can occur—can

explore patterns in even and odd numbers and use shared definitions to reason about

them. Yet even as students increasingly explore mathematical worlds, opportunities to

mathematize the real world continue to be important from the early grades into

adulthood (as illustrated in both Chapters 3 and 5).

While the practice standards remain the same across grade levels, the ways in which

students engage in the practices progress and develop through experience and

opportunity. In early grades, mathematical reasoning is primarily representation-based:

When justifying a claim about even and odd numbers, students will typically refer to

some representation like countable objects, a story, or a number line or other drawing.

Representational and visual thinking remains important through high school and

beyond.

As students become comfortable in additional mathematical contexts and develop more

shared understanding in those contexts, reasoning may plateau at that level as they rely

on mathematical definitions and prior results. However, teachers should recognize the

importance of concrete ways of making conjectures and justifying them mathematically

to avoid unduly privileging more abstract reasoning. Moving too early to abstract

reasoning—before all students have an adequate base of representations (physical,

visual, contextual, or verbal) with which to reason—can have the effect that many

students experience mathematical arguments as meaningless, abstract manipulation.

Ample mathematical reasoning and argumentation with concrete representations (such

as appropriate manipulatives and visual representations) and with contextual examples

helps to foster a classroom learning environment that provides access for and builds

understanding in all students. (Note that concrete is used here not in the sense of
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tangible and physical, but in the sense of making sense; see Gravemeijer, 1997; Van

Den Heuvel-Panhuizen, 2003.)

The principle of learning an abstract idea by accessing concrete representations and

examples does not apply to students in younger grades; it is needed any time students

encounter new concepts. For example, students in grades five and six, working on their

understanding of percentage, benefit from a bar representation that is used in

increasingly abstract ways, finally simplifying to a double number line (Van Den

Heuvel-Panhuizen, 2003). The use of representations and visuals provides scaffolding

that English learners and others may use to connect the academic language to their

conceptual understanding.

Consider a sixth-grade class that is using such a bar representation to explore

percentages. Different students will see different uses of the representation, and use it

to reason in different ways. Some may quickly generalize calculation patterns that they

observe (SMP.7), and begin to calculate without reference to the bar representation: “If

the price after a 25-percent discount is $96, then I just divide that by three and add it to

$96 to get the original price of $128.”

This realization can be used productively, both to help these students to connect their

method to the sense-making bar representation (SMP.8) and to help other students

understand their classmates’ ideas. One useful routine for this is careful selecting,

sequencing, and connecting of student work as described in 5 Practices for

Orchestrating Productive Mathematics Discussions (Smith & Stein, 2018). However, it is

easy—even when attempting to implement the 5 Practices routine—to hold up the work

of students who have moved beyond the concrete representation as the preferred

method (because it might appear to be quicker, or more generalized, or closer to a final

understanding teachers hope all students will reach). This can create the false notion

that reliance on sense-making representations is an indication of weakness. Therefore,
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it is important for teachers to support all students to make sense of each other’s

approaches by building connections between them.

Evidence from neuroscience suggests that some of the most effective understandings

come about when connections are made between visual/physical and numerical or

symbolic representations of ideas (see figure from NCTM, 2014). When students relate

numbers to visual representations, they make connections between brain pathways that

link ideas they hold in different parts of the brain. These connections are important to

students at all ages and grade levels (Boaler, Chen, Williams & Cordero, 2016).

At all grades, students should have ample experience in all of the processes above

(exploring authentic contexts, discovering regularity and structure, abstracting and

generalizing, and reasoning and communicating). As with the modeling cycle (see

Chapter 8), some of these processes are historically emphasized far more than others,

contributing to many students’ loss of a belief in mathematics as a sense-making

activity. Classroom activities that are designed to engage students in these processes

therefore must be sufficiently open ended, to allow students room to explore, must give

access to the regularity and structure that is present, and must allow generalization to

broader settings.
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Teaching practices for the development of SMP
Principles to Action: Ensuring Mathematical Success for All (NCTM, 2014) outlines eight

“Mathematics Teaching Practices:”

1. Establish mathematics goals to focus learning.

2. Implement tasks that promote reasoning and problem solving.

3. Use and connect mathematical representations.

4. Facilitate meaningful mathematical discourse.

5. Pose purposeful questions.

6. Build procedural fluency from conceptual understanding.

7. Support productive struggle in learning mathematics.

8. Elicit and use evidence of student thinking.

Some of these items are especially relevant in developing SMPs, especially SMP.3, 7,

and 8. First, mathematical goals (Teaching Practice 1) must include SMPs as central

drivers of activity design that goes beyond the sentiment that rich tasks naturally

engage students in all eight SMPs. Second, posing purposeful questions (Teaching

Practice 5) is crucial in establishing students’ inclination to engage in the SMPs as they

encounter mathematical situations. Reprinted here is a framework for teacher question

types (NCTM, 2014). All question types are important; type 1 (Gathering information) is

traditionally over-represented while types 2, 3, and 4 help make clear that students are

expected to engage in the SMPs. Also, Chapter 2 offers guidance in inclusive teaching

approaches that foster SMPs as well.

Numbe
r

Question Type Description Examples

1 Gathering
information

Students recall
facts, definitions, or
procedures.

When you write an
equation, what does the
equal sign tell you?
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What is the formula for
finding the area of a
rectangle?

What does the interquartile
range indicate for a set of
data?

2 Probing thinking Students explain,
elaborate, or clarify
their thinking,
including articulating
the steps in solution
methods or the
completion of a
task.

As you drew that number
line, what decisions did you
make so that you could
represent 7 fourths on it?
Can you show and explain
more about how you used a
table to find the answer to
the Smartphone Plans task?

It is still not clear how you
figured out that 20 was the
scale factor, so can you
explain it another way?

3 Making the
mathematics visible

Students discuss
mathematical
structures and make
connections among
mathematical ideas
and relationships.

What does your equation
have to do with the band
concert situation?

How does that array relate
to multiplication and
division?

In what ways might the
normal distribution apply to
this situation?

4 Encouraging
reflection and
justification

Students reveal
deeper
understanding of
their reasoning and

How might you prove that 51
is the solution?
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actions, including
making an argument
for the validity of
their work.

How do you know that the
sum of two odd numbers will
always be even?
Why does plan A in the
Smartphone Plans task
start out cheaper but
become more expensive
in the long run?

Finally, this table adapted from Barnes and Toncheff (2016) helps to connect the

mathematical teaching practices above (MTPs) with all of the SMPs.

Standards for Mathematical Practice
(SMPs)

Mathematics Teaching Practices (MTP)

SMP.1 Make sense of problems and
persevere in solving them

MTP.1 Establish mathematics goals to
focus learning.

SMP.2 Reason abstractly and
quantitatively.

MTP.2 Implement tasks that promote
reasoning and problem solving.

SMP.3 Construct viable arguments and
critique the reasoning of others.

MTP.3 Use and connect mathematical
representations.

SMP.4 Model with mathematics. MTP.4 Facilitate meaningful mathematical
discourse.

SMP.5 Use appropriate tools strategically. MTP.5 Pose purposeful questions.

SMP.6 Attend to precision. MTP.6 Build procedural fluency from
conceptual understanding.

SMP.7 Look for and make use of
structure.

MTP.7 Support productive struggle in
learning mathematics.
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SMP.8 Look for and express regularity in
repeated reasoning.

MTP.8 Elicit and use evidence of student
thinking.

A good source of video examples of lessons designed to develop the Standards for

Mathematical Practice, especially SMPs 3, 7, and 8, is the video resources at Fostering

Math Practices (http://www.fosteringmathpractices.com/routinesforreasoning/).

Grades K–5 Progression of SMPs 3, 7, and 8
Imagine a teacher puts the number 36 on the board and asks students to determine all

the ways they can make 36. In the context of an open problem such as this, young

learners conjecture, notice patterns, use the structure of place value, notice and make

use of properties of operations, and make sense of the reasoning of others. These

practices often occur together as part of classroom discussions that focus on

argumentation and reasoning through engaging mathematical contexts. The choice of

number here makes a big difference; a grade-three teacher might choose 36 to build

multiplication ideas; a kindergarten teacher might use 12 to both formatively assess and

work to strengthen students’ emerging operation understanding.

Consider, for example, the following first-grade snapshot of a number talk activity.

Number talks are brief, daily activities that support number sense. Prior to the lesson,

the teacher understands that presenting a question or problem to the whole class and

asking for individual responses will be challenging for some English learners. In the

designated ELD lessons prior to this whole-group instruction, the teacher practices the

discourse needed to explain their thinking and problem solving while giving them the

language they need to be able to participate.

First-Grade Snapshot: Number Talks for Reasoning

Big Idea: Flexibility in composing and decomposing numbers

Prior to the lesson, the teacher understands that presenting a question or problem to

the whole class and asking for individual response may be challenging for some
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students, especially students who are still gaining proficiency in English. In the

designated ELD lessons prior to this whole group lesson, the teacher practices the

discourse needed to explain mathematical thinking and problem solving so that

multilingual students have the language they need to participate in the whole class

lesson.

The teacher introduces the number talk by placing the problem 7+3 on the board,

waiting patiently as small silent thumbs pop up communicating they are ready to offer

an answer and the strategy they used to figure it out. The teacher selects a first student,

Iggy, to share.

Teacher: Iggy, how did you figure out 7+3?

Iggy: I knew 7+2 is 9 and 9+1 is 10.

Teacher records Iggy’s thinking on the board and re-voices their response, then

probes Iggy further: Iggy, where did the 2 and the 1 come from?

Iggy: That number.

Teacher: Which number? Who can add on to Iggy’s strategy? How did they know

to add 2 more and then 1 more? Sam?

Sam: 2 and 1 are both in 3. Iggy broke down 3.

Teacher: You noticed that 2 + 1 is 3. Iggy is that what you did? Did you think, let

me break down 3 because I know 7+2 is 9 and 9 +1 is 10?

Iggy: Yes

Teacher: Who else wants to share how they figured out the answer? Alex?

Alex: Counting on? I did like, I started with 7 and then I counted, 8, 9, 10.

Teacher records Alex’s thinking and re-voices their response, then adds: So

that’s a different strategy? (Alex nods.) Did anyone else count on like Alex?
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The teacher selects other students who share their own strategies and make sense of

their peers’ reasoning, all based in a relatively straightforward computation problem.

This approach supports mathematical sense-making and communication. While

students certainly arrive at the answer “10,” the focus of the activity is making sense of

the addition problem, thinking flexibly and creatively about a range of ways to solve it,

communicating one’s thinking and making sense of the reasoning of others. Exploring

authentic mathematical contexts.

Authentic (from Chapter 1): An authentic problem, activity, or context is one in which

students investigate or struggle with situations or questions about which they actually

wonder. Some principles for authentic problems include 1) Problems have a real

purpose; 2) Relevance to learners and their world; 3) Doing mathematics adds

something; and 4) Problems foster discussion (Özgün-Koca, Chelst, Edwards, & Lewis,

2019).

Culturally Responsive-Sustaining Education: Education that recognizes and builds

on multiple expressions of diversity (e.g., race, social class, gender, language, sexual

orientation, religion, ability) as assets for teaching and learning. (NYSED, 2019)

SMP.3, 7, and 8 describe ways of exploring mathematical contexts such as numerical

patterns, geometry, and place-value structure. These activities might involve multiple

visual representations, such as fractions represented in both area models, like

partitioned circles, and linear models, like number lines. Allowing students to explore the

same mathematical ideas and operations using multiple representations and strategies

is crucial for students to develop flexible ways of thinking about numbers and shapes

(e.g., Rule of Four [http://www.sfusdmath.org/rule-of-four.html]). Students of all grade

levels should engage in opportunities to create important brain connections through

seeing mathematical ideas in different ways (also see Chapter 2).

At the elementary level, students work with familiar numbers. This may mean they

generalize in ways that will be revisited and revised in the later grades as new numbers
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and mathematical principles are introduced. For example, at the early-elementary level,

students may appropriately generalize about the behavior of positive whole numbers in

ways that are revisited at the later elementary grades with the introduction of fractions

(later called rational numbers), and then again later on at advanced grades with the

introduction of imaginary or irrational numbers. Students may also use everyday

contexts and examples in order to make arguments. For example, a student might offer

a story about two friends sharing cookies to demonstrate that an odd number, when

divided by two, has a remainder of one. The Data Science chapter further outlines ways

that everyday contexts can become generative for learning and doing mathematics

together. Importantly, contexts should be authentic to students (as defined above)—not

the hypothetical contexts used in many textbooks that require students to suspend their

common sense in order to engage with the intended mathematics (see Boaler, 2009). It

is important to make mathematical contexts culturally relevant to ensure that diverse

student experiences are considered and possibly make connections with students’

families. Chapter 2 offers examples of culturally relevant contexts for learning

mathematics. Engaging students’ families, cultures, and communities in mathematics

learning is an important strategy to ensure the cultural relevance of mathematics

lessons and to enhance students’ mathematical identities.

Discovering regularity in repeated reasoning and structure
Students at the elementary level may notice and use structures such as place value,

properties of operations, and attributes about shapes to make conjectures and solve

problems. Additionally, students notice and make use of regularity in repeated

reasoning. At the elementary level, students may notice, through repeatedly multiplying

with the number four, that it is always the same as doubling twice. Students might also

notice a pattern in the change of a product when the factor is increased by one. For

example, that since 7 x 8 = 56, then 7 x 9 will be 7 more than 56. These regularities may

lead to claims about general methods or the development of shortcuts based on

conceptual reasoning.
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A variety of reasoning activities support students in thinking flexibly about operations

with numbers and relationships between numbers. In number talks and dot talks,

students share and connect multiple strategies by explaining why the strategies work or

comparing advantages and disadvantages. Chapter 3 offers a grade-two number talk

vignette where students work on doubles posed as addition problems. In the vignettes,

students share strategies to solve 13 + 13. Many of the strategies made use of place

value structure and counting strategies. As students in the snapshot offer approaches

and consider the ideas shared by their peers, some students revise their answers. In a

“Collect and Display” activity (Zwiers, et al, 2017), teachers can scribe student

responses (using students’ exact words whenever possible and attributing authorship)

on a graphic organizer on the board during the whole class discussion comparing two

mathematical ideas, such as expressions and equations. In a “Compare and Connect”

activity (Zwiers, et al, 2017), students relate the expressions to the diagrams by asking

specific questions about how two different-looking representations could possibly mean

the same thing. For example, a teacher might ask, “Where is the 2w in this picture?” or

“Which term shows this line on the rectangle?”

Abstracting or generalizing from observed structure and regularity
Young learners might explore place value structure through manipulatives like ten

frames. In a number talk with 10-frame pictures, students offer various strategies used

to figure out the quantity shown. Students also attend to and discern patterns and

structure as they construct and critique arguments. A student might notice that four sets

of six gives the same total as six sets of four, and that this applies to three sets of seven

and seven sets of three, and so on, to conjecture about the commutative property

during a number talk.
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Reasoning and communicating to share and justify
Part of constructing mathematical arguments includes understanding and using

previously established mathematical assumptions, definitions, and results. For example,

an elementary-aged student might conjecture that two different shapes have equal area

because, as the class has already recognized and agreed upon, the shapes are each

half of the same rectangle. The student draws on prior knowledge already been

demonstrated mathematically in order to make their argument.

Constructing and critiquing mathematical arguments includes exploring the truth of

particular conjectures through cases and counterexamples. At the elementary level, a

student may use, for example, a rhombus as a counterexample to the conjecture that all

quadrilaterals with four equal sides are squares. Students may use multiplication with

fractions, decimals, one, or zero to counter the conjecture that multiplying always leads

to a larger number.

Grades 6–8 Progression of SMP.3, 7, and 8
Students in middle school build on early experiences to deepen their interactions with

mathematics and with others as they do mathematics together. During the elementary

grades, students typically draw on concrete manipulatives and representation in order to
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engage in mathematical reasoning and argumentation. At the middle-school level,

students may rely more on symbolic representations, such as expressions and

equations, in addition to concrete referents (such as algebra tiles and area models for

algebraic expressions; physical or drawn examples of geometric objects; and

computer-generated simulation models of data-generating contexts). Number talks

(Parrish, 2010; Humphreys & Parker, 2015) and number strings (a series of related

number talks or problems designed to build towards big mathematical ideas; see Fosnot

& Dolk, 2002) are useful at the middle school level as well, and offer a range of

opportunities for students to build on their elementary grades experiences to make

sense of mathematical ideas with peers. For example, consider the following classroom

snapshot.

Authentic: An authentic problem, activity, or context is one in which students

investigate or struggle with situations or questions about which they actually wonder.

(from Chapter 1)

Exploring authentic mathematical contexts

Middle-school students become increasingly sophisticated observers of their everyday

worlds as they develop new interests in understanding themselves and their

communities. These budding interests can become engaging real-world contexts for

mathematizing. The Data Science chapter offers examples of middle-school students

exploring data about the world around them.

Mathematical contexts to explore, in addition to those carrying forward from earlier

grades (number patterns and two-dimensional geometry), include the structure of

operations, more sophisticated number patterns, proportional situations and other linear

functions, and patterns in computation.

Grade Seven Snapshot: Estimating using structure
Big Idea: Flexibility in composing and decomposing numbers
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Prior to the lesson, a seventh-grade teacher, in order to ensure that all students,

including linguistically and culturally diverse English learners, are supported, engages

students in an activity to practice the discourse needed to explain their thinking and

problem solving. This activity, they hope, will also increase participation. The activity

transitions into the teacher introducing the number string activity and writes this problem

(from http://www.mathtalks.net) on the board:

Are there more inches in a mile or seconds in a day?

After some wait time for individual thinking, the teacher asks students to show where

they are in their thinking using their fingers, a routine the class knows well: closed fist

for “still trying to find an approach to try;” one finger for “have an approach and haven’t

got an answer yet;” two fingers for “have an answer with an explanation, and not very

confident;” three fingers for “have an answer and an explanation that I’m confident in;”

and four fingers for “have tried two or more approaches and confirmed my answer.”

After a little more wait, she asks students to show again their status, and she chooses a

student holding up two fingers:

Teacher: Can you describe your approach that might help us figure out which is

bigger?

Courtney: I remember there are about 5,000 feet in a mile, so there are about

50,000 inches in a mile since there are about 10 inches in a foot. I rounded them

both down. But then with seconds, I tried to figure out 24 × 60 and if I round

those, it’s only about 1,200 seconds but that seems too small. [Teacher scribes

both calculations, including units where the student included them.]

Teacher: Is there anyone else who thinks they can go a little farther with this

idea?

Tristán: I tried the same thing but I got 60,000 inches in a mile instead of 50,000.
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Courtney: Did you round 12 inches in a foot down to 10?

Tristán: Oh yeah, I didn’t.

Teacher: Courtney, can you explain again why you thought something wasn’t

right with your method?

Courtney: When I tried to figure out the number of seconds, the number seemed

too small—it was a lot smaller than the 50,000 I got for inches in a mile.

Bethney: You did 24 × 60?

Courtney: Yeah.

Bethney: Where did you get the 60?

Courtney: Seconds in a minute. And the 24 is hours in a day. Wait… [Teacher

adds units to the 24 × 60 on the board from earlier]

Bethney: I thought it was minutes in an hour [Teacher adds alternate unit to 60].

So, 24 × 60 is how many minutes in a day.

Courtney: Oh, so I have to times that by 60 again.

Teacher: So, Courtney, now it sounds like you think you could do 24 × 60 and

then multiply by 60 again? [scribes (24 × 60) × 60 on board]. Can somebody else

help me with units on these? What quantity is each of these numbers

representing?

Cameron: The 24 is hours per day, and the first 60 is minutes per hour.

Michael: So, the thing in parentheses is minutes per day. And then the second 60

is seconds per minute.
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The discussion continues, exploring several ways that students computed and

estimated 24 hours/day × 60 minutes/hour × 60 seconds/minute and 5,280 feet/mile ×

12 inches/foot. After several methods had been compared and connected, and students

seemed to agree (with justification) that there are more seconds in a day than inches in

a mile, the teacher added to the problem statement:

Teacher: What if I add this to the problem? [scribes on board “or breaths in a

typical human lifetime?”]

After more wait time and a repeat of the finger routine, the teacher selects a

student displaying three fingers, who hasn’t already participated:

Teacher: Ji-U, can you describe part of your approach?

Ji-U: I counted while I breathed, and decided that a breath takes about four

seconds.

Teacher: Who else did something to decide how long a breath takes? [[most

students raise hand] How long did you estimate? [chorus of four seconds, five

seconds, six seconds]

The conversation continues with students adapting strategies from earlier, including:

● I searched and found to use 79 years for average lifespan

● Approximated number of seconds in a life, using earlier calculation of

seconds/year, then divided by five seconds/breath

● Replaced 60 seconds/minute in earlier calculation with 15 breaths/minute to get

number of breaths in a year since I thought each breath was four seconds

● Realized that 24 × 60 × 15 × 79 has to be much bigger than 24 × 60 × 60 since

15 × 79 is more than 60
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● So, there are more breaths in a 79-year human life!

The teacher concludes this final number talk in the string by asking students to think

about and then share with a neighbor some descriptions of what they learned or noticed

during the talk. Then a few students share something interesting their partner noticed,

while the teacher highlights strategies that involve significant use of place value

structure, others which make use of rounding with an explanation of the effect of the

rounding, and others which compare products that share factors by comparing the other

factors.

The number string offered students the opportunity to notice their own errors without the

teacher’s evaluation. As students made sense of the problems in multiple ways, they

reflected on their own thinking, made connections, and revised their own thinking.

Rather than positioning the student as lacking in mathematical competence, the number

string positioned Student 1’s error as an invitation for further sense-making, and as a

normal part of doing mathematics. The teacher highlighted strategies which made

significant use of structure of numbers and of operations.

Discovering regularity in repeated reasoning and structure
Students at the middle level may build on their knowledge of place value structure and

expand their use of structures, properties of operations, and attributes about shapes to

make conjectures and solve problems. For example, middle-school students might draw

on tables of equivalent ratios to conjecture about underlying multiplicative relationships.

Abstracting and generalizing from observed regularity and structure
Students might notice during a mathematical discussion that interior angle sums

regularly increase in relation to the number of sides in a polygon and use this repeated

reasoning to conjecture a rule for the sum of interior angles in any polygon. In a

Compare and Connect activity (Zwiers, et al., 2017), students compare and contrast two

mathematical representations (e.g., place value blocks, number line, numeral, words,

fraction blocks) or two solution strategies together (e.g., finding the eleventh tile pattern
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number recursively—”there were four more tiles each time, so I just added four to the

four starting tiles, ten times”—compared to noticing a relationship between the figure

number and the number of tiles—“I noticed that each side is always one more than the

figure number, so I did four times the figure number plus one. And then I had to take

away four because I counted the corners twice.”). As a whole class, students might

address the following questions:

● Why did these two different-looking strategies lead to the same results?

● How do these two different-looking visuals represent the same idea?

● Why did these two similar-looking strategies lead to different results?

● How do these two similar-looking visuals represent different ideas?

The reference (Inside Mathematics, n.d.) includes a grade-eight illustration (with video)

of SMP 7 (Look for and make use of structure) from the South San Francisco Unified

School District.

It illustrates students noticing mathematical structure in a concrete context—namely,

water flowing in a closed system from one container into another. After observing the

relationship between the two quantities (the water level in each container), they note

constant rates of change and starting value. Students then apply the structure they

discover, in order to recognize graphs corresponding to different systems—evidence of

abstracting. Teacher moves that support their investigation include modeling of

academic language, building on and connecting student ideas, restating student ideas,

and more.

The Education Development Center (2016) has built student dialogue snapshots to

illustrate the SMPs. The grade 6–7 example, Consecutive Sums, illustrates students
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working on the problem “in how many ways can a number be written as a sum of

consecutive positive integers?” They work many examples, notice a pattern to their

calculations, and connect that pattern to some structure of the numbers they are

working with. They are then able to generalize that structure and develop a general

strategy for writing integers as sums of consecutive integers.

Reasoning and communicating to share and justify
Part of constructing mathematical arguments includes understanding and using

previously established mathematical assumptions, definitions, and results. Students

might conjecture that the diagonals of a parallelogram bisect each other, after having

experimented with a representative selection of possible parallelograms. Like in the

elementary grades, where students may conjecture about shapes and area, students at

the middle-school level continue this practice with mathematical content that builds on

foundational ideas.

Constructing and critiquing mathematical arguments includes exploring the truth of

particular conjectures through cases and counterexamples. An important use of

counterexamples in middle school is the use of numerical counterexamples to identify

common errors in algebraic manipulation, such as thinking that 5 – 2x is equivalent to

3x.

In Boaler and colleagues’ Youcubed summer camp for middle-school students, which

significantly increased achievement in a short period of time (Boaler 2019), students

were taught that reasoning is a crucially important part of mathematics. They were told

that scientists build evidence for theories by making predictions and then performing

experiments to check their predictions; mathematicians, on the other hand, prove their

claims by reasoning. Students were also told that it was important to reason well and to

be convincing and there are three levels of being convincing: 1) It is easiest to convince

yourself of something; 2) it is a little harder to convince a friend; and 3) the highest level
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of all is to convince a skeptic. Students were asked to be really convincing and also to

be skeptics. An exchange between a convincer and a skeptic might include:

Jackie: I think that the difference between even and odd numbers is that when

you divide them into two equal groups, even numbers have no left overs and odd

numbers always have 1 leftover.

Soren: How do you know it’s always one left over?

Jackie: Because, like, if you divide any odd number in half, like, look it—take the

number five, it would be two groups of two and then one left over. Or the number

seven, it would be two groups of three and then one left over. There is always

one left over.

Soren: Can you prove it? Maybe it just works for 5 and 7.

Jackie: Well, it’s kind like, it will always be one left over because if it was two left

over, they would just go in each of the groups, or if it was three left over, two

would go in each of the groups. So, there’s always only one left over.

In the summer camp, students loved being skeptics; and when others were presenting,

they learned to ask questions of each other such as: “How do you know that works?”

“Why did you use that method?” and “Can you prove it to us?” In essence, students

were learning to construct viable arguments and critique the reasoning of others

(SMP.3). After only 18 lessons the students improved their achievement by the

equivalent of 2.8 years of school. Students related their increased achievement to the

classroom environment that encouraged discussion, convincing, and skepticism (see

https://vimeo.com/245472639), as illustrated by this interview with two students, TJ and

José:

Interviewer: So, what did it take in summer math camp to be successful?

TJ: Being able to communicate with your partner as you go.
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José: And being able to show visuals, not just numbers.

TJ: Being able to explain things well.

José: And then someone says how, or why or...

TJ & José: Prove it! [laughing].

José: Uh, what, what is that called, a, um....

TJ: Skeptical question.

José: Yeah, skep-, yeah, skeptic.

Interviewer: And what does that mean and how does that feel?

TJ: It’s fun to be.

José: [laughs]

Interviewer: Can you explain?

TJ: Because like it helps the other person that’s not being skeptical...

José: Think about the problem.

TJ: Yes. For example, if Carlos said like, “This is a square,” and I’m like, “Prove

it.”

José: Mmm, it has all, um, it, okay, it has all even sides and all, and all the

corners are ninety degrees.

TJ: Why?

José: ‘Cause it is.

TJ: Prove it!

José: It is! [laughs]
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TJ: [laughs]

José: I just proved it.

There are many routines that help support students in being the skeptic, including tools

to support English learners and others to develop the necessary language: In a

“Critique, Correct, Clarify” activity (Zwiers et al., 2017), students are provided with

teacher-made or curated ambiguous or incomplete mathematical arguments (e.g., “1/2

is the same as 3/6 because you do the same to the top and bottom” or “2 hundreds is

more than 25 tens because hundreds are bigger than tens”). Students practice

respectfully making sense of, critiquing, and suggesting revisions together. In a “Three

Reads” activity (Zwiers et al., 2017), students make sense of word problems and other

mathematical texts by discussing with each other: 1) the context of the situation, 2)

relevant quantities (things that can be counted or measured), and 3) what mathematical

questions we might ask about them before revealing what question the teacher has for

them to answer.

Grades 9–12 Progression of SMP.3, 7, and 8 – High School snapshot:

Number string on an open number line

Big Idea: What characteristics matter?

The teacher introduces the activity by drawing a long horizontal line on the board, with

arrow heads at both ends, and placing two marks on the line, labeled a and b (with a to

the left of b).
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I’d like you to think about where on the line I should place a + b. Should it go to

the left of a, between a and b, or to the right of b?

After most students give thumbs-up in front of their chests (this signal for “I’ve got a

strategy or explanation”), the teacher explores with the students and discovers that

most students have tried several possible values for each variable, and concluded that

a + b must be to the right of b. A few students, however, are having trouble not blurting

out. The teacher calls on one of these students:

Teacher: Angel, you are shaking your head. Why is that?

Angel: Because –1 + 2.

Quite a few students have an, “Oh, I didn’t think about that” look on their faces. After

further sharing, every student generates examples for each possible placement of a + b.

Finally, the teacher moves from the number talk into a more-involved team activity,

asking—given specific numbers a and b—how to tell where to place a + b. The class

generates these generalizations (assuming a and b are real numbers, and a < b):

● If a and b are both positive, then a + b is greater than b

● If a and b are both negative, then a + b is less than a

● If a is negative and b is positive, then a + b is between a and b

In pairs, students generate informal justifications for each of these (which are then

refined whole-class; for instance, for the third one: b is positive, so adding it to a moves

to the right of a. So, a + b is greater than a. And a is negative, so adding it to b moves to

the left of b. So, a + b is less than b.

The students think they are done, but the teacher assures them that their list of

possibilities is incomplete. One student volunteers the idea that perhaps b could be

negative and a positive; other students point out that this is impossible given the original

condition that a is to the left of b on the number line. Ultimately, one pair realizes that

one of a or b could be zero, and students modify their list of statements to include these
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possibilities. The teacher asks: “Is there anything I could add to the number line that

would make it possible to answer the original question?”

Students quickly agree that if they knew where zero was, they could answer the

question. At the next math talk opportunity, the teacher again draws a number line with

just a and b marked on it as before, and asks students this time to think about where a∙b

should go. After wait time and thumbs, the question is: “What different kinds of numbers

do you expect to matter?”

Students discuss in pairs, and most believe that it matters whether a and b are positive

or negative. Some share examples –2 ∙ –4 is greater than both –2 and –4; –3 ∙ 5 is less

than both factors. A few pairs consider what happens if one factor is zero.

After these considerations are offered and recorded, the teacher asks:

So, if I tell you where zero is, you think you can place a ∙ b on the line?

Many students say yes or nod; nobody disagrees. The teacher places zero on the

number line to the left of a, and invites pairs of students to formulate statements about

the relationship of a ∙ b to a and b, along the lines of the previous session’s statements

about addition. Most pairs do not consider non-integer values for a and b, and generate

statements such as:

● If a and b are both positive, then a ∙ b is greater than b.

Some pairs have noticed that if a = 1, then the above statement is not true; the class

modifies the statement to address this case (either by excluding a = 1 or by adding “or

equal to” to the conclusion). If no pairs consider the possibility of a between 0 and 1, the

teacher might prompt:

There are some types of numbers I’m worried about that we haven’t considered

yet.
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This work leads to a significant investigation of statements that can be made and

justified about the relative locations on the number line of a, b, and a + b, a ∙ b, a – b, or

a ÷ b.

Notice several important features of this number string (leading to extended

investigation): The number line is a familiar mathematical representation that can be

explored to a great depth. Students easily generate their own examples to engage in

wondering about the posed questions, and these examples lead to tempting

generalizations (conjectures). Some of those generalizations turn out to be false, forcing

students to examine a broader set of examples and to look for structure to explain why

they are false and how to fix them. Different generalizations will arise in different student

teams, leading to a need to justify and to critique others’ arguments.

In high school, students build on their earlier experiences in developing their inclination

and ability to explore, discover, generalize and abstract, and argue. It is important that

high-school teachers understand when designing student activities that the SMPs are

as important as the content standards and must be developed together. The University

of California, California State Universities, and California Community Colleges have a

joint Statement on Competencies in Mathematics Expected of Entering College

Students (ICAS, 2013) makes this clear, with expectations for students such as:

“A view that mathematics makes sense—students should perceive mathematics

as a way of understanding, not as a sequence of algorithms to be memorized

and applied.” (p. 3)

“students should be able to find patterns, make conjectures, and test those

conjectures; they should recognize that abstraction and generalization are

important sources of the power of mathematics; they should understand that

mathematical structures are useful as representations of phenomena in the

physical world….” (p. 3)
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“Taken together the Standards of Mathematical Practice should be viewed as an

integrated whole where each component should be visible in every unit of

instruction.” (p. 7)

Exploring authentic mathematical contexts

Authentic: An authentic problem, activity, or context is one in which students

investigate or struggle with situations or questions about which they actually wonder.

(from Chapter 1: Introduction)

By high school, students have a wide array of contexts available for exploration. They

continue to explore non-mathematical contexts—in the real world, in puzzles, etc.

Chapter 5 addresses one set of tools for exploring such contexts, and mathematical

modeling represents another (overlapping) set. Often, data and modeling approaches

yield mathematical contexts which then can be explored in the manner discussed here.

SMPs 7 and 8 afford opportunities to explore mathematical contexts and situations.

Numerical patterns, geometry, and place value-based structure in the early grades,

supplemented by structure and properties of operations in upper elementary and middle

school, expand in high school to focus on algebraic, statistical, and geometric structure

and repeated reasoning.

Important objects in algebraic settings include variables (letters or other symbols

representing arbitrary elements of some specified set of numbers; distinct from

unknowns and constants), graphs (often but not always graphs of functions), equations,

expressions, and functions (often given by algebraic expressions—formulas—or implied

by tables or graphs).

One very important skill in working with functions is to move fluently between

contextual, graphical, symbolic, and numerical (e.g., table of values) representations of

a function. Thus, activities that induce a need to switch representations are crucial. The

exercise of moving from a formula (symbolic representation) to a graph is vastly
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overrepresented in most students’ experience, often via sample values (numerical

representation) and connecting dots. Examples of other pairings are described here.

An engaging and important way to introduce patterns, expressions and functions, is

through the context of visual or physical patterns (an easy-to-understand context).

Students can first be asked to describe the growth of such a pattern with words, and

then move to symbolic representations. In this way, students can learn that algebra is a

useful tool for describing the patterns in the world and for communication. Note the

examples below showing patterns for this type of work:

Example 1:

How do you see the shape growing?

Source: http://www.mec-math.org/

Example 2:
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Further examples of this visual approach to algebra (with videos of lessons) can be

seen at https://www.youcubed.org/tasks/squares-upon-squares/ and

https://www.youtube.com/watch?v=3icoSeGqQtY.

43

https://www.youcubed.org/tasks/squares-upon-squares/
https://www.youtube.com/watch?v=3icoSeGqQtY


“Guess my rule” games (with student-generated sequences) require students to attempt

to move from numerical representations to formulas. Students often can find a recursive

formula first; “find the 100th term”-type questions force an attempt to move to a formula

in terms of the sequence number. It is important that students have some experience

with “guess my rule” games whose rule does not match the most obvious formula, as

any finite set of initial values cannot determine an infinite sequence. As an example, the

sequence 1, 2, 4, 8 is generated nicely by the function

; the next term is 40, not 16! However, in

many instances (including most applications) the “simplest” rule that fits the given data

is a good one to explore first.

In the other direction, “build this graph” activities require student teams to try to build

given graphs (perhaps visually modeling real-world data) from graphs of

well-understood “simple” functions—perhaps monomials such as , perhaps also

and , or whatever set of “parent” functions is already understood. The

graph to the right contains the graphs of and , together with

their sum . This type of decomposition of a (graph of a) function is
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very important in many applied settings, in which (for example) different causal factors

might act on very different time scales.

Discovering regularity in repeated reasoning and structure
To explore a context with an eye for algebraic structure is to consider the parts that

make up or might make up an algebraic object such as a function, visual representation,

graph, expression, or equation, and to try to build some understanding of the object as a

whole from knowledge about its parts. Noticing regularity in repeated reasoning in an

algebraic context often leads to discoveries that similar reasoning is required for

different parameter values (e.g., comparing the processes of transforming the graph of

into the graphs for the functions , , and , leading to general

statements about graphing functions of the form ).

Source: https://commons.wikimedia.org/wiki/File:Euler%27s_Polyhedron_Formula.svg.
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In a geometric context, structural exploration (SMP.7) examines the relationships

between objects and their parts: polyhedra and their faces, edges, and vertices; circles

and their radii, perimeters, and areas; areas in the plane and their bounding curves.

Repeated reasoning occurs when exploring the sum of interior angles for polygons with

different numbers of sides, discovering Euler’s formula V – E + F = 2 (see figure),

exploring possible tilings of the plane with regular polygons, and more.

For instance, a “guess my rule” game (for the sequence –6, –13, –26, –45,...), followed

by “predict the 100th number in the sequence,” can lead to a rich exploration of

quadratics and the meaning and impact of the quadratic, linear, and constant

terms—and eventually to the quadratic function .

Carefully-designed prompts and/or a series of “guess my rule” constraints can help

student teams discover the relationship between the coefficient of and the constant

second difference of a sequence (here, the constant second difference of the sequence

is –6, so the coefficient of is –3). Further exploration, perhaps graphical, can uncover

the idea of finding a linear function to add to so that the sum generates the

original sequence for whole-number inputs.
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.

Exploring the general behavior of could be motivated by comparing sequences,

using questions like “which sequence will have a higher value in the long run? How do

you know?”

To try to predict the general behavior (that is, the shape of the graph) of , student

teams should consider the known shape of the graph of , explore what

happens to the graph if they multiply every output value by 3 and then take the opposite
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of every output, then perhaps sketch the two functions and

both on a plane and add the output values for many sample values for , to get a sense

for the shape of . Sharing strategies, and being accountable for

understanding and using other teams’ strategies, will ensure that students have ample

opportunities to connect across approaches and be prepared to notice patterns and

repeated reasoning when tackling similar problems.

It is important to note that producing by hand a reasonably accurate graph of a function

given by a formula is not a goal in its own right. Instead, it can be a means towards the

end of deeply and flexibly understanding the meaning of a graph and the relationship

between a function, its graph, the points on the graph, and the context that generated

the function.

Every student should also have easy access and frequent opportunities to use

computer algebra systems to graph functions, thus focusing mental energy on

interpretation and connection.

Playing the “guess my rule” game several times (perhaps with a constraint of constant

second differences) would have students noticing the similarity in what they are having

to do each time. The point is not to become fast at sketching the graph of a quadratic,

but to first notice, and then understand, the ways in which the different parts of the

formula can be considered separately to help understand the whole. In other words,

noticing repeated reasoning leads to the revealing of structure.
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The “build this graph” example in the previous section may seem at first glance to be

more difficult than understanding the structure of , since the parts are not

necessarily as apparent as they are in the formula for . However, consider the

graph to the right. If asked to describe the behavior of this function, students will offer

ideas like “as gets bigger, the function values generally get bigger; it wiggles up and

down and generally goes up.” A student team offering such a description has noted the

two “parts” of this function’s behavior, and thus discovered some of its structure. They

are well on their way to using graphing software in identifying as a

likely formula for this function.

Abstracting and generalizing from observed regularity and structure
Observing repetition in reasoning naturally leads to questions such as, “Do we have to

keep doing the same thing with different numbers?” and, “What is the largest set of

examples that we could apply this reasoning to?” Exploring either question involves

examining structure. Students abstract an argument when they phrase it in terms of

properties which might be shared by a number of objects or situations—thus paying
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attention to the structure of the objects or situations. They generalize when they extend

an observation or known property to a larger class.

Several rounds of explorations such as the “guess my rule” example above could lead

to any of the following abstractions and generalizations:

● The quadratic term in a quadratic function always dominates over time; that is,

graphs of functions of the form , where a, b, and c are

real numbers, always have the shape of a parabola, and the parabola opens up

or down depending on the sign of .

● If is as above and you compare , and , then the

difference is more than the difference

(generalizing to non-integer “second differences”).

● To determine a quadratic function, you need to know at least four points on the

graph because with just three you cannot decide whether the second differences

are constant (note that this conjecture is not true, which means it raises a good

opportunity for exploring possible justifications or critiques).

● When adding two functions, the steepness (slope) of the new function at each

input value is also the sum of the two slopes (at that input) of the functions being

added.

● When comparing two quadratics, the one with the faster-growing quadratic term

(the larger ) always will be larger for large enough values of x, no matter what

the linear and constant terms are.

● When comparing two polynomials, the one with the faster-growing quadratic term

always wins in the long run (generalizing to polynomials from the smaller class of

quadratics).

The “build this function” tasks above might lead to abstractions that are more along the

lines of heuristics for understanding the structure of functions presented graphically:
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● When trying to break down a graph, look at the largest-scale pattern you can

see. If the graph generally goes in a straight line, like the

example, try to find that straight line and subtract it out.

● When trying to break down a graph, look at the most important pattern—the one

that causes the biggest ups and/or downs (like the parabolic shape of the

example). Try to figure out the shape of that pattern, and

subtract it out.

● If there is a periodic up-and-down in the graph, there’s probably a or

in the formula.

Reasoning and communicating to share and justify
In many respects, mathematical knowledge and content understanding is developed

and demonstrated socially; it is of little value to find a correct “solution” to a problem

without the ability to communicate to others the validity and meaning of that solution,

and we clarify our thinking through exchange with others. SMP 3 includes these aspects

of the development of arguments: “They justify their conclusions, communicate them to

others, and respond to the arguments of others.” In order to create an environment that

makes mathematical practices such as SMP 3 accessible to all students, teachers

should develop routines with students that support being able to communicate their

thoughts and ideas, as well as work socially in a classroom of mixed language and math

knowledge. Chapter 2 offers examples of such routines, including reflective discussions,

peer revoicing routines, as well as teacher moves that support the creation of a mixed

language mathematics community.  It is therefore of upmost importance that teachers

create environments and routines that provide access for all students to communicate

their thoughts and ideas with each other and with the teacher. The Math Language

Routines, developed by Understanding Language at the Stanford Center for

Assessment, Learning, and Equity, provide teachers with a set of robust routines to

foster student participation while building math language, practices, and content

simultaneously.
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An important (implicit) aspect of SMP.3 is a recognition that the authority in mathematics

lies within mathematical reasoning itself. Students come to own their understanding

through constructing and critiquing arguments, and through this process increase their

confidence and their sense of agency in mathematics. Classroom routines in which

students must justify—or at least give evidence for—their abstractions or

generalizations, and in which other students are responsible for questioning

justifications and evidence, help to build the “am I convinced?” and “could I convince a

reasonable skeptic?” meta-thinking that is at the heart of SMP.3. An example would be

a mathematical implementation of the classroom routine “Claim, Evidence, and

Reasoning (CER),” which is popular in science and writing instruction (McNeil & Martin,

2011; see https://my.nsta.org/collection/GBdqFKABr0U_E for science resources). Here,

the different elements of an argument when investigating a problems are:

● Stating a claim

● Giving evidence for that claim

● Producing mathematical reasoning to support the claim

It is important to note that the mathematical reasoning here is of a different sort than

scientific reasoning when CER is used in science: In science, the reasoning is for the

purpose of connecting the evidence to the claim, explaining why the evidence supports

the claim. On the other hand, the mathematical reasoning in the CER routine is

expected to explain why (making use of structure) something is true in general (thus

also explaining why the examples used as evidence are valid.

It is useful to name “giving evidence” and “producing reasoning” as separate processes,

to distinguish between the noticing of pattern and structure (evidence) and the

reasoning to support a general claim. For instance, in exploring a growth pattern,

students might notice that the sum of three consecutive integers always seems to be

divisible by three, and formulate that as a claim: “I think that whenever you add three

numbers in a row, the answer is always a multiple of three.” When it’s clear the student

means three consecutive integers, other students might check additional examples and
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contribute additional evidence. But the reasoning step requires something more:  A

numerical fluency argument (“If you take away one from the third number and add it to

the first number, then you just have three times the middle number”), an algebraic

argument (such as “if a is an integer, then ”),

or some other general argument.

Carefully chosen number talks—well known in the elementary-math classroom—can be

implemented in high school as a way to enable students to compare ideas and

approaches with others in a low-stakes environment. They help to build SMP.1 (Make

sense of problems and persevere in solving them) in addition to SMP.3. Well-chosen

routines or tasks, such as number strings, can help build SMP.7 and SMP.8 by building

from specific examples to thinking in terms of structure (abstraction) or larger classes

(generalization).

For example (see the snapshot at the beginning of this section) open number lines

(blank, with no numbers marked), used with multiplication or division, can provide

problems for number talks or strings that lead often to over-generalization—a great

thing to happen, as it creates skepticism and forces a re-evaluation of evidence and a

search for convincing justification.

Additional types of activities can create in students the need to reason and

communicate as ways to support explanations and justifications. These include

producing reports, videos, or materials to model for others (for example, to parents or to

the next-younger class); prediction and estimation activities; and creating contexts. The

last—creating real-life or puzzle-based contexts generating given mathematics such as

a given function type—help to cultivate meta-thinking about structure (what are the parts

of a quadratic function and how might I recreate them in a puzzle or find them in a

real-life setting) and to develop a way of seeing the world through the lens of

mathematics.
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The CA CCSSM identify two particular proof methods in SMP 3.1: Proof by

contradiction and proof by induction. The logic of proof by contradiction is

straightforward to students: “No, that can’t be, because if it was true, then….” The

standard high school examples are proofs that is irrational, and that there are

infinitely many prime integers. These are both clear examples. Although the second of

these two does not actually require a proof by contradiction, the proof below is most

easily understood when worked out through the contradiction framework: “What would

happen if there were only finitely many primes?”

The difficulty is to embed such proofs in a context that prompts a wondering, a need to

know, on the part of students; and then to uncover the steps of the argument in such a

way so as not to seem pulled out of thin air. Some approaches attempt to motivate with

historical contexts, others with patterns. For example, suppose we already have

established that every natural number greater than 1 is either prime or is a product of

two or more prime factors. “Maybe 2, 3, 5, 7, 11, and 13 are all the primes we need to

make all integers! No? Well, maybe if we add 17 to the set we have them all?” When

students get tired of the repeated reasoning of finding an integer that is not a product of

the given primes, either students or the teacher can ask whether there might always be

a way of finding an integer that is not a product of integers in the given finite set. This

gives an opening for a proof by contradiction: Let’s pretend (assume) that there are only

finitely many primes—let’s say n of them. Why don’t we call them . Can

you write down an expression for a natural number that is not divisible by any of these

primes? To eventually arrive at a proof requires constructing an integer that can’t

possibly be divisible by any of —Euclid’s choice (call it ) was the product

of all of them, plus 1: . Once an argument is found that is not

divisible by any of , then since must be either a prime or a product of 2

or more prime factors that are not in the list , we have found a

contradiction to our initial assumption that contains all primes. Thus, the

list of primes cannot be finite.
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The logic of proof by induction is also straightforward when described informally: The

first case is true, and whenever one case is true, the next one is true as well. Thus, the

chain goes on forever. Such chains of statements, and wonder about whether they go

on forever, might be easier to motivate from patterns than proof by contradiction. For

instance, students might notice, in the context of exploring quadratic functions, that

whenever they substitute an odd integer in for x in the function , they

obtain an output that is a multiple of 8. This naturally leads to the questions, “Is this

really true for all odd integers x?” and, “Could I use the fact that it’s true for to

show that it’s true for ?” The formalism of representing “the next odd number” after

x as follows relatively naturally, and “using one case to prove the next” can

proceed. This example should be accompanied by the question, “Why doesn’t the

argument work for even integers?”

As described here, “proof” in high school does not originate with purely mathematical

claims put forth by curriculum or by the teacher (“Prove that alternate interior angles are

congruent”), nor with formal axioms and rules of logic. Rather, proof originates, like all

mathematics, with a need to understand—in the case of proof, a need to understand

why an observed phenomenon is true and that it is true for a defined range of cases. It

is not enough that the curriculum writer or the teacher understand, and wishes for

students to understand. The need to understand—and to understand why—must be

authentic to students for learning to be deep and lasting. Thus, it is important that

students’ experiences with constructing and critiquing arguments (SMP 3)—including

their experiences with formal proof—be embedded as much as possible within a

process beginning with wonder about a context and ending with a social and intellectual

need to understand and justify:

1. Exploring authentic mathematical contexts

2. Discovering regularity in repeated reasoning and structure

3. Abstracting and generalizing from observed regularity and structure
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4. Reasoning and communicating with and about mathematics in order to share and

justify conclusions

Conclusion
This chapter focuses on key ideas that bring the SMPs to life. The content focuses on

three interrelated practices: 1) Constructing viable arguments and critiquing the

reasoning of others; 2) Looking for and making use of structure; and 3) Looking for and

expressing regularity in repeated reasoning. By considering these practices together,

the chapter focuses on the foundations of classroom experiences that center exploring,

discovering, and reasoning with and about mathematics. While this chapter illustrates

the integration of three mathematical practices, all SMPs must be taught in an

integrated way throughout the year. This vision for teaching and learning mathematics

comes out of a several decades-long national push in mathematics education to pay

more attention to supporting K–12 students in becoming powerful users of mathematics

to help make sense of their world.

The chapter explores the practices across the elementary-, middle-, and high-school

grade bands. Included below is an example tracing students’ as they progress with the

mathematical practices, including some ways in which contexts for learning and doing

mathematics and the practices themselves might evolve over the grades. Note that

socialization with these SMPs occurs through language, and so supports for developing

language for reasoning and interacting with mathematics and others is central to these

progressions.

Across the grades, students use everyday contexts and examples in order to explore,

discover, and reason with and about mathematics. At the early grades, everyday

contexts might come from familiar activities that children engage in at home, at school

and within their community. These contexts might include imagined play or familiar

celebrations with friends, siblings, or cousins; and familiar places such as a park,

playground, zoo, or school itself. Meaningful contexts are also those that center notions
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of fairness and justice, such as issues related to the environment, social policies, or

particular problems faced in the community. As teachers better know their students and

the communities they represent and those create in classrooms, the contexts that

matter to young children come to the fore.

In the middle grades, the contexts that are relevant to students continue to include—but

increasingly go beyond—local, everyday activities and interactions. Middle-school

students might begin to explore publicly available datasets on current events of interest,

use familiar digital tools to explore the mathematics around them, and explore

mathematical topics within everyday contexts like purchasing snacks with friends,

playing or watching sports, or saving money. By the time they reach high school,

students have acquired a wide array of contexts to explore, increasingly understanding

society and the world around them through explorations in data, number, and space.

As noted in the CA CCSSM, the SMPs span the entirety of K–12. They develop in

relation to progressions in mathematics content. At the elementary level, students work

with numbers with which they are currently familiar, and begin to explore the structure of

place value, patterns in our base-10 number system (such as even and odd numbers),

and mathematical relationships (such as different ways to decompose numbers or

relationships between addition and multiplication). Through these explorations, young

students conjecture, explain, express agreement and disagreement, and come to make

sense of data, number, and shapes.

Students in middle school build on these early experiences to deepen their interactions

with mathematics and with others as they do mathematics together. During the

elementary grades, students typically draw on contexts and on concrete manipulatives

and representations in order to engage in mathematical reasoning and argumentation.

At the middle-school level, students continue to reason with such concrete referents,

and also begin to draw on symbolic representations (such as expressions and

equations), graphs, and other representations which have become familiar enough that

students experience them as concrete. Middle-school students deepen their
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opportunities for sense-making as they move into ratios and proportional relationships,

expressions and equations, geometric reasoning, and data.

In high school, students continue to build on earlier experiences as they make sense of

functions and ways of representing functions, relationships between geometric objects

and their parts, and data arising in contexts of interest. As students grow through years

of making sense of and communicating about mathematics with one another and the

teacher, the same practices that cut across grades K–12 emerge at developmentally

and mathematically appropriate levels.
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