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Introduction
A society without mathematical affection is like a city without concerts,

parks, or museums. To miss out on mathematics is to live without an

opportunity to play with beautiful ideas and see the world in a new light.

—Francis Su (2020)

Welcome to the 2021 Mathematics Framework for California Public Schools,

Kindergarten Through Grade Twelve (Math Framework). This framework serves as a

guide to implementing the California Common Core State Standards for Mathematics

(CA CCSSM or the Standards). Built upon underlying and updated principles of focus,

coherence, and rigor, the Standards hold the promise of enabling all California students

to become powerful users of mathematics in order to better understand and positively

impact the world—in their careers, in college, and in civic life.

Mathematics as a Gatekeeper or a Launchpad?
Be careful how you interpret the world: It is like that.

—Erich Heller (1952)

Mathematics provides a set of lenses that provide important ways to understand many

situations and ideas. The ability to use these mathematical lenses flexibly and

accurately enables the people of California to apply mathematical understandings to

influence their communities and the larger world in important ways. Mathematics

continues to play a role in how we conceive of our careers, evidence-based civic

discourse and policy-making, and the examination of assumptions and principles

underlying action. All students are capable of making these contributions and achieving

these abilities at the highest levels. As a guide to implementing the Standards, this

framework outlines innovative mathematical learning experiences with the potential to

help all California students.

To develop learning that can lead to mathematical power for all California students, the

framework has much to correct; the subject and community of mathematics has a
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history of exclusion and filtering, rather than inclusion and welcoming. There persists a

mentality that some people are “bad in math” (or otherwise do not belong), and this

mentality pervades many sources and at many levels. Girls and Black and Brown

children, notably, represent groups that more often receive messages that they are not

capable of high-level mathematics, compared to their White and male counterparts

(Shah & Leonardo, 2017). As early as preschool and kindergarten, research and policy

documents use deficit-oriented labels to describe Black and Latinx and low-income

children’s mathematical learning and position them as already behind their white and

middle-class peers (NCSM & TODOS, 2016). These signifiers exacerbate and are

exacerbated by acceleration programs that stratify mathematics pathways for students

as early as sixth grade.

Students internalize these messages to such a degree that undoing a self-identity that is

“bad at math” to one that “loves math” is rare. Before students have opportunities to

excel in mathematics, many often self-select out of mathematics because they see no

relevance for their learning, and no longer recognize the inherent value or purpose in

learning mathematics. The fixed mindset about mathematics ability reflected in these

beliefs helps to explain the exclusionary role that mathematics plays in students’

opportunities, and leads to widespread inequities in the discipline of mathematics. Some

of these include:

● Students who are perceived as “weak” in mathematics are often informally

tracked before grade seven in ways that severely limit their experiences with and

approaches to mathematics (Butler, 2008) and their future options (Parker et al,

2014). See also Chapter 8.

● Students who do not quickly and accurately perform rote procedures get

discouraged and decide not to persist in mathematically-oriented studies.

● Students who are learning the English language are deemed incapable of

handling, and denied access to, grade-level authentic mathematics.
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● Students with learning differences that affect performance on computational

tasks are denied access to richer mathematics, even when the learning

differences might not affect other mathematical domains (Lambert, 2018).

● Students who are tracked into lower mathematics courses in middle and high

school can be denied entry into prestigious colleges.

Many factors contribute to mathematics exclusion. As one example, consider a system

described in more detail in Chapters 7 (Grades 6–8) and 8 (Grades 9–12): Though

many high schools offer integrated mathematics, high school mathematics courses are

often structured in such a way (e.g., algebra-geometry-algebra 2- precalculus) calculus

is considered the main course for Science, Technology, Engineering, Arts, and

Mathematics (STEAM)-oriented students, and is only available to students who are

considered “advanced” in middle school—that is, taking algebra in eighth grade. In

order to reach algebra in grade eight, students must cover all of middle grades math in

just two years (or else skip some foundational material). This means that many school

systems are organized in ways that ultimately decide which students are likely to go into

STEAM pathways when they begin sixth grade. This reality leads to considerable racial-

and gender-based inequities and filters out the majority of students out of a STEAM

pathway (Joseph, Hailu, Boston, 2017). Moreover, English learners have

disproportionately less access, are placed more often in remedial classes and are

steered away from STEAM courses and pathways (National Academies of Sciences,

Engineering, and Medicine, 2018). High school mathematics courses such as data

science should exist as a viable option whether students consider STEAM or

non-STEAM career options.

Considering that many competitive colleges and universities (those that accept less

than 25 percent of applicants) hold calculus as an unstated requirement, the inequitable

pathway becomes even more problematic. Many students remain unaware that their

status at the end of fifth grade can determine their ability to attend a top university; if

they are not in the advanced mathematics track and on a pathway to calculus in each of

the subsequent six years of school, they will not meet this unstated admission
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requirement. This mathematics pathway system, typical of many school districts,

counters the evidence that shows all fifth graders are capable of eventually learning

calculus, or other high-level courses, when provided appropriate messaging, teaching,

and support. The system of providing only some students pathways to calculus, or

statistics, data science or other high-level courses has resulted in the denial of

opportunities too many potential STEAM students—especially Latinx and African

American students. At the same time, arbitrary or irrelevant mathematics hurdles block

too many students from pursuing non-STEAM careers. Mathematics education must

support students whether they wish to pursue STEAM disciplines or any other promising

major that prepares them for careers in other fields, like law, politics, design, and the

media. Mathematics also needs to be relevant for students who pursue careers directly

after high school, without attending college (Daro & Asturias, 2019). Schooling practices

that lead to such race- and gender-based disparities can lead to legal liabilities for

districts and schools (Lawyers’ Committee for Civil Rights of the San Francisco Bay

Area, 2013). A fuller discussion of one example is included in Chapter 8. The middle-

and high-school chapters (Chapters 7 and 8), and the data science chapter (Chapter 5)

outline an approach that enables all students to move to calculus, data science,

statistics, or other high level courses, with grade level courses, 6, 7, and 8 in middle

school. The new provision of a data science high school course, open to all students(not

only those considered “advanced” in middle school), that can serve as a replacement

for algebra 2, has the potential to open STEAM pathways to diverse groups of students,

both through its engaging content and its openness to all students—as described further

in Chapter 5, and Chapters 7 and 8.

Mathematics education can also create the levels of understanding that can launch

student action, both locally and globally. While every level of schooling must focus on

providing access to mathematical power for all students, changing the high-school level

mathematics remains a critical component to opening mathematics doorways for all

students. In Catalyzing Change in Middle School Mathematics, NCTM suggests that the

purpose of school mathematics expand to include the development of positive
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mathematical identities and a strong sense of agency (see Aguirre, Mayfield-Ingram, &

Martin, 2013). NCTM further urges educators to focus on dismantling structural

obstacles that stand in the way of rich mathematical experiences for all students, and

organize middle-school mathematics along a common, shared pathway grounded in the

use of mathematical practices and processes that support mathematical understanding.

Pathways that provide access to higher-level mathematics from a typical grade nine

course are described in Chapter 8. In local educational agencies (LEAs) where high

school administrators commit to such pathways and vow to support communities of

teachers and students in succeeding in grade-level appropriate mathematics, middle

school pathways can avoid compressing or skipping important mathematical courses

that can speed students through fundamental content. Nor will teachers need to track

students into different pathways. More fundamentally, all stakeholders need to work to

shift the definition of mathematics success away from acceleration, and focus on depth

of learning.

Learning Mathematics: for All

Introduction
Students learn best when they are actively engaged in questioning, struggling, problem

solving, reasoning, communicating, making connections, and explaining. The research

is overwhelmingly clear that powerful mathematics classrooms thrive when students feel

a sense of agency (a willingness to engage in the discipline, based in a belief in

progress through engagement) and an understanding that the intellectual authority in

mathematics rests in mathematical reasoning itself (in other words, that mathematics

makes sense) (Boaler, 2019 a, b; Boaler, Cordero & Dieckmann, 2019; Anderson,

Boaler & Dieckmann, 2018; Schoenfeld, 2014). These factors support students as they

develop their own identities as powerful mathematics learners and users. Further,

active-learning experiences enable students to engage in a full range of mathematical

activities—exploring, noticing, questioning, solving, justifying, explaining, representing

and analyzing—making clear that mathematics represents far more than calculating.
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Research is also clear that all students are capable of becoming powerful mathematics

learners and users (Boaler, 2019a, c). This notion runs counter to many students’ ideas

about school mathematics. Most adults can recall times when they received messages

during their school or college years that they were not cut out for mathematics-based

fields. The race-, class-, and gender-based differences in those who pursue more

advanced mathematics make it clear that messages students receive about who

belongs in mathematics are biased along racial, socioeconomic status, language, and

gender lines, a fact that has led to considerable inequities in mathematics.

In 2015, Sarah-Jane Leslie, Andrei Cimpian, and colleagues interviewed university

professors in different subject areas to gauge student perceptions of educational

“gifts”—the concept that people need a special ability to be successful in a particular

field. The results were staggering; the more prevalent the idea, in any academic field,

the fewer women and people of color participating in that field. This outcome held

across all thirty subjects in the study. More mathematics professors believed that

students needed a gift than any other professor of STEAM content. The study highlights

the subtle ways that students are dissuaded from continuing in mathematics and

underscores the important role mathematics teachers play in communicating messages

that mathematics success is only achievable for select students. This pervasive belief

more often influences women and people of color to conclude they will not find success

in classes or studies that rely on knowledge of mathematics.

Negative messages, either explicit (“I think you’d be happier if you didn’t take that hard

mathematics class”) or implicit (“I’m just not a math person”), both imply that only some

people can succeed. Perceptions can also be personal (“Math just doesn’t seem to be

your strength”) or general (“This test isn’t showing me that these students have what it

takes in math.” My other class aced this test.”). And they can also be linked to labels

(“low kids,” “bubble kids,” “slow kids”) that lead to a differentiated and unjust

mathematics education for students.
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A fundamental aim of this framework is to respond issues of inequity in mathematics

learning; equity influences all aspects of this document. Some overarching principles

that guide work towards equity in mathematics include the following:

● Access to an engaging and humanizing education—a socio-cultural, human

endeavor—is a universal right, central among civil rights.

● All students deserve powerful mathematics; we reject ideas of natural gifts and

talents (Cimpian et al, 2015; Boaler, 2019) and the “cult of the genius” (Ellenberg,

2015).

● The belief that “I treat everyone the same” is insufficient: Active efforts in

mathematics teaching are required in order to counter the cultural forces that

have led to and continue to perpetuate current inequities (Langer-Osuna, 2011).

● Student engagement must be a design goal of mathematics curriculum design,

co-equal with content goals.

● Mathematics pathways must open mathematics to all students, eliminating

option-limiting tracking.

● Students’ cultural backgrounds, experiences, and language are resources for

learning mathematics (González, Moll, & Amanti, 2006; Turner &

Celedón-Pattichis, 2011; Moschkovich, 2013).

● All students, regardless of background, language of origin, differences, or

foundational knowledge are capable and deserving of depth of understanding

and engagement in rich mathematics tasks.

Rejecting Fixed Ideas about Students
Hard work and persistence is more important for success in mathematics than

natural ability. Actually, I would give this advice to anyone working in any field,

but it’s especially important in mathematics and physics where the traditional

view was that natural ability was the primary factor in success.”

—Maria Klawe, Mathematician, Harvey Mudd President
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(in Williams, 2018)

Fixed notions about student ability, such as ideas of “giftedness,” have led to

considerable inequities in mathematics education. Particularly damaging is the idea of

the “math brain”—that people are born with a brain that is suited (or not) for math.

Technologies that have emerged in the last few decades have allowed researchers to

understand the mind and brain and completely challenged this idea. With current

technology, scientists can study learning in mathematics through brain activity; they can

look at growth and degeneration and see the impact of different emotional conditions on

brain activity. This work has shown—resoundingly—that all people possess the capacity

to learn mathematics to very high levels. Multiple studies have shown the incredible

capacity of brains to grow and change within a short period of time (Huber et al, 2018;

Luculano et al, 2015; Abiola & Dhindsa, 2011; Maguire, Woollett, & Spiers, 2006;

Woollett & Maguire, 2011). Learning allows brains to form, strengthen, or connect brain

pathways in a process of almost constant change and adaptation (Doidge, 2007; Boaler,

2019a). An important goal of this framework is to replace ideas of innate mathematics

“talent” and “giftedness” with the recognition that every student is on a growth pathway.

There is no cutoff determining when one child is “gifted” and another is not.

The neuroscientific evidence that shows the potential of all students to reach high levels

in mathematics is the evidence base that supports the importance of mindset

messages. Stanford University psychologist Carol Dweck and her colleagues have

conducted research studies in different subjects and fields for decades showing that

people’s beliefs about personal potential changes the ways their brains operate and

influences what they achieve. One of the important studies Dweck and her colleagues

conducted took place in mathematics classes at Columbia University (Carr et al., 2012),

where researchers found that young women received messaging that they did not

belong in the discipline. When students with a fixed mindset heard the message that

math was not for women, they dropped out. Those with a growth mindset, however,

protected by the belief that anyone can learn anything, ultimately rejected the
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stereotype and persisted. Dweck and her colleagues have shown, through multiple

studies, that students with a growth mindset achieve at higher levels in mathematics,

and that when students change their mindsets, from fixed to growth, their mathematics

achievement increases (Blackwell, Trzesniewski & Dweck, 2007; Boaler, 2019).

Another idea related to the “math brain” that teachers should challenge comes from

social comparison. Students often believe that brains must be fixed, because some

people appear to get ideas faster and to be naturally good at certain subjects. What

these students do not realize is that brains grow and change every day. Each moment is

an opportunity for brain growth and development and some students have developed

stronger pathways on a different timeline. Teachers should strive to reinforce the idea

that all students can develop those pathways at any time if they take the right approach

to learning.

It is important for teachers to share the science of brain growth and clarifying the idea

that, although students are all unique, anyone can learn the content that is being taught,

and productive learning is in part due to their thinking. This understanding can be

particularly effective at the beginning of the school year or math course. Students may

find the message liberating, and allow it to override any prevailing messaging from

teachers that success in math can only be achieved by a few students. When students

learn about brain growth and mindset, they realize something critically important—no

matter where they are in their learning, they can improve and eventually excel

(Blackwell, Trzesniewski & Dweck, 2007). Teachers should also underscore the

importance and value of times of struggle. This understanding comes, in part, from

psychologist Jason Moser and his colleagues, who found that when adults were taking

tests, they experienced more brain growth and activity when they made mistakes than

when they achieved correct answers (Moser, et al, 2011). This fits into a range of

neuroscientific work showing that times of struggle are productive for brains as they are

the times that pathways are developing and strengthening. The importance of struggle

has been shown through both brain-based and behavior-based studies. Daniel Coyle
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(2009), for example, studied the highest achieving people in different fields of work and

found a characteristic shared by these achievers was a willingness to struggle—to work

“at the edge of their understanding,” to make mistakes, correct them, move on, and

create more. This, he found, was the optimal approach to accelerate learning. This

evidence becomes particularly important when we consider that students often struggle

in math class, decide they do not have a “math brain,” and give up. It is important for

teachers to share the research on the benefits of  and encourage students to persevere

when it seems easier to give up. Various videos for sharing messages about mindset

and the value of struggle are provided at

https://www.youcubed.org/resource/mindset-boosting-videos/.

The significance of changing the ways teachers, parents, and others, consider students

with different learning needs—because they are higher achieving, learning English, or

have learning differences, is considered below:

Linguistically and Culturally Diverse Learners
In mathematics and mathematics education, the important step is to accept other

ways of knowing and other forms of mathematical activity. The history of

mathematics, when we focus on the dynamics of cultural encounters, is,

effectively, mankind’s worldwide, transcultural endeavor in the search for survival

and transcendence. Only a limited and biased view of history tells us that this

search is the privilege of a specific culture.

Ubiratan D’Ambrosio, Culturally Responsive Mathematics Education (2009)

Humans are all hardwired to learn mathematics (Devlin 2001). Regardless of culture or

origin, humans can already distinguish between quantities during infancy (Lipton &

Spelke 2003). Despite this, schooling experiences can either support individuals’ natural

mathematical curiosities and competencies or diminish them. In fact, NAEP data

continue to show the influence of schooling on English learners, who experience greater

mathematical disconnection. These trends have typically been framed and interpreted in
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deficit terms. Yet the universal capacity for mathematics points to a different

interpretation; mathematics education in the United States has not been designed to

meet the needs of many students in our culturally and linguistically diverse society

(Gutierrez, 2008).

Mathematics education in the United States was initially structured for a narrow

purpose: to prepare privileged, young, white men for entrance into elite colleges.

Harvard University chose to make arithmetic a college requirement based on the belief

at the time that the mind was a muscle that could be trained through exercise and drills,

just like the body. Those in positions of authority designed secondary schools to offer

the mathematics courses that Harvard required for entrance: arithmetic, algebra,

geometry, and advanced topics (Furr, 1996). While instruction has shifted toward

learning with understanding, and the field increasingly attends to issues of equity and

access, mathematics education still largely recreates this rigid and rote approach to

mathematics teaching and learning; achievement in mathematics often reflects these

original, narrow purposes. These foundations continue to limit the experience of

mathematics as relevant, meaningful, and engaging and obscure many student

competencies that could otherwise be drawn upon to support making sense of

mathematics. This is particularly true for linguistically and culturally diverse learners of

English, whose competencies have long been obscured through deficit frameworks and

narrow conceptions of mathematical competence. This framework includes the fact that

these students are “linguistically and culturally diverse,” and draws from The Coalition

for English Learner Equity’s (CELE) website,

to describe a heterogeneous group of learners that includes students learning in

Dual Language contexts, students who are multilingual, and students who are

bureaucratically labeled as English learners. These are students for whom

language is a reason for their minoritization due to systemic racism, but also for

whom language, culture, and literacy are their greatest assets"

(http://elequity.org, footnote 3).
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Far from being a cultural-free environment, mathematics classrooms function as

communities of learners. Educators and administrators continue to gain key insights into

how teachers and students create mathematics learning communities that are

engaging, inclusive, and rigorous. Culturally responsive mathematics education, for

example, emphasizes active, collaborative communities of learners engaged in

mathematical explorations through meaningful and personally-relevant social contexts

(Powell, Mukhopadhyay, Nelson-Barber, & Greer, 2009). And studies on language and

mathematics education highlight the importance of centering students’ cultural and

linguistic competencies and identities in defining particular communities of learners

(Moschkovich, 2009; Turner, et al, 2013).

Students with Learning Differences

The evidence that all students have the potential to reach high levels is particularly

important for students diagnosed with special needs, many of whom are set on low-level

pathways, even as research is showing the capacity of all brains to rewire and change

(Boaler & LaMar, 2019). Across the United States, approximately 8.4 percent of

students are diagnosed as having a special education need. The vast majority of

those—72 percent—are diagnosed as having mild to moderate needs, including

learning differences such as dyslexia, dyscalculia, and auditory processing disorder.

Inequities persist in special education just as they do in most other aspects of schooling.

For example, males and students of color are more frequently classified as special

education students than females and white mainstream students. Nearly twice as many

males as females are classified as students with learning differences. The group most

likely to be classified as “mentally retarded” or “learning disabled” are boys of color.

Black students with learning differences are four times more likely than their white

counterparts to be educated in correctional facilities. Although the field of special

education has traditionally referred to students with special needs as being “learning

disabled,” documenting various “disabilities” that require attention, we prefer the term

“learning differences.” This gives an asset, rather than deficit, framing, acknowledging
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that students may have a need for learning support but this does not mean they should

be viewed as limited or “disabled.”

Further, new and promising research is showing that students can develop the brain

pathways they need and lose the need for learning assistance. In one study researchers

gave a learning intervention to 24 children ranging from seven to twelve years old who

were either clinically diagnosed with dyslexia or recorded as having significant reading

difficulties (Huber et al, 2018). These children were given an intensive eight-week long

reading intervention program where they participated in one-on-one training sessions

for four hours a day, five days a week. The researchers found large-scale changes in

brain growth for the participants. Furthermore, this brain growth was correlated with a

significant improvement in reading skills. By the end of the intervention program, the

average reading achievement score for the intervention group was within the range of

scores for typical readers (Huber et al, 2018). A different intervention studying

mathematics, conducted by neuroscientist Teresa Luculano and her colleagues in

Stanford’s school of medicine, was similarly promising (Luculano et al, 2015). The

researchers brought in children from two groups—one group had been diagnosed as

having mathematics “learning disabilities” and the other consisted of regular performers.

The researchers examined scans of the children’s brains taken when they were working

on mathematics. They found actual brain differences—the students identified as having

disabilities had more brain regions illuminated when they worked on a mathematics

problem. The researchers provided one-to-one tutoring for both sets of students—those

who were regular performers and those identified as having a mathematics learning

difference. The tutoring, which included eight weeks of 40–50 minute sessions per day,

focused on strengthening student understanding of relationships between and within

operations. At the end of the eight weeks of tutoring, not only did both sets of students

have the same achievement; they also activated the same brain areas. Both of these

studies show that in a short period of time with careful teaching, brains can be changed

and rewired. Such studies should remind us that all students are on a growth journey.

The dichotomous thinking that fills schools—with decisions that some students are
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“smart” or capable of high-level work, while others have “learning disabilities”—does not

appear justified when considering the latest work in brain growth from neuroscience and

elsewhere, and has created significant inequalities in mathematics. The idea of student

inadequacy has often been based on a mathematics approach that is narrow and speed

based. When mathematics is made multi-dimensional (see below), and depth is valued

over speed, different students are able to access ideas and connect with the

mathematics. The guidelines in Universal Design for Learning (or UDL) show the

importance of teaching in a more multi-dimensional way—sharing ideas and valuing

student input with multiple forms of engagement, representation and expression

(https://udlguidelines.cast.org/). Adopting the perspective that learning differences

represent strengths and more multidimensional teaching can allow all students to be

successful.

High Achieving Students
In previous versions of this framework, students who have shown higher achievement

than their peers have been given fixed labels of “giftedness” and taught differently. Such

labelling has often led to fragility among students, who fear times of struggle in case

they lose the label (see, for example:

https://www.youcubed.org/rethinking-giftedness-film/), as well as significant racial

divisions. In California in the years 2004–2014, 32 percent of Asian American students

were in gifted programs compared with 8 percent of White students, 4 percent of Black

students, and 3 percent of Latinx students

(https://nces.ed.gov/programs/digest/d17/tables/dt17_204.80.asp).

While many districts have moved away from such labelling and the resulting differential

treatment, students who achieve at high levels can still suffer from a faster paced (and

often shallower) mathematics experience—one that does not lead to depth of

understanding or appreciation of the content. The legacy of mathematics education as

both “mental training” and as a sort-of access code for higher education have undercut

meaningful learning, reducing mathematics to a high-stakes performance for the
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college-bound student, and as an arbitrary hurdle for all others. Even for the

highest-achieving students, pressures to use mathematics courses as social capital for

advancement can often undercut efforts to promote learning with understanding. This

often results in what some deem a “rush to calculus,” which has not helped students.

Bressoud (2017) studied the mathematics pathways of students moving from calculus to

college. He found that out of the 800,000 students who take calculus in high school,

roughly 250,000 or 31.25 percent of students move ‘backwards’ and take precalculus,

college algebra, or remedial mathematics. Roughly 150,000 students take other courses

such as Business Calculus, Statistics, or no mathematics course at all. Another

250,000, retake Calculus 1 and of these students about 60 percent of them earn an A or

B and 40 percent earn a C or lower. Only 150,000 or 19 percent of students go on to

Calculus II. This signals that the approach that is so prevalent in schools––of rushing

students to calculus, without depth of understanding––is not helping their long term

mathematics preparation. This has led the Mathematical Association of America (MAA)

and the National Council of Teachers of Mathematics (NCTM) to issue the following joint

statement:

Although calculus can play an important role in secondary school, the ultimate

goal of the K–12 mathematics curriculum should not be to get students into and

through a course in calculus by twelfth grade but to have established the

mathematical foundation that will enable students to pursue whatever course of

study interests them when they get to college. The college curriculum should

offer students an experience that is new and engaging, broadening their

understanding of the world of mathematics while strengthening their mastery of

tools that they will need if they choose to pursue a mathematically intensive

discipline.

(http://launchings.blogspot.com/2012/04/maanctm-joint-position-on-calculus.html)

Other studies give insights into the reasons that students do not do well when rushed

through mathematics courses, particularly in the field of de-tracking. Burris, Heubert &
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Levin (2006) followed students through middle schools in the district of New York. In the

first three years, the students were in regular or advanced classes, in the following three

years all students took the same mathematics classes comprised of advanced content.

In their longitudinal study the researchers found that when all students learned together

the students achieved more, took more advanced courses in high school, and passed

state exams a year earlier, with achievement advantages across the achievement

range, including the highest achievers (Burris, Heubert & Levin, 2006). In a study with

similar findings, conducted in the California Bay Area, eight school districts de-tracked

middle school mathematics and gave professional development to the teachers. In 2014

63 percent of students where in advanced classes, in 2015 only 12 percent were in

advanced classes and everyone else was taking Common Core math 8. The overall

achievement of the students after the de-tracking significantly increased. The cohort of

students who were in eighth-grade mathematics in 2015 were 15 months ahead of the

previous cohort of students who were mainly in advanced classes (MAC & CAASPP

2015). Educators in the San Francisco Unified School District found similar benefits

when they delayed any students taking advanced classes in mathematics until after

tenth grade and moved the algebra course from eighth to ninth grade. After making this

change the proportion of students failing algebra fell from 40 percent to eight percent,

and the proportion of students taking advanced classes rose to a third of the students,

more than any other number in the history of the district (Boaler et al, 2018).

One of the reasons that students are often limited when in tracked groups is the

questions given to the students are narrow, which precludes access for some students

and stops higher achievers from taking the work to higher levels. When schools

de-track, and teachers move to giving differentiated work or more open mathematics

questions that can reflect different levels, students of all achievement levels benefit. All

this evidence supports the belief that students are best served working on mathematics

at a reasonable pace—not rushing coursework means that high achievers can take

work to deeper levels rather than speed ahead with superficial understanding of
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content, and learn to appreciate the beauty of mathematics and the connections

between mathematical areas. All students can take Common Core-aligned mathematics

6, 7, and 8 in middle school and still take calculus, data science, statistics, or other

high-level courses in high school.

Multi-dimensional Mathematics
A third meaningful result from studies of the brain is the importance of brain

connections. Vinod Menon (2015) and a team of researchers at Stanford University

have studied the interacting networks in the brain, particularly focusing on the ways the

brain works when it is solving problems—including mathematics problems. They found

that even when people are engaged with a simple arithmetic question, five different

areas of the brain are involved, two of which are visual pathways. The dorsal visual

pathway is the main brain region for representing quantity.

Menon and other neuroscientists also found that communication between the different

brain areas enhances learning and performance. Researchers Joonkoo Park and

Elizabeth Brannon (2013) reported that different areas of the brain were involved when

people worked with symbols, such as numerals, than when they worked with visual and

spatial information, such as an array of dots. The researchers also found that

mathematics learning and performance were optimized when these two areas of the

brain were communicating with each other. Learning mathematical ideas comes not

only through numbers, but also through words, visuals, models, algorithms, multiple

representations, tables, and graphs; from moving and touching; and from other

representations. But when learning reflects the use of two or more of these means and

the different areas of the brain responsible for each communicate with each other, the

learning experience improves.

For this reason, this framework highlights examples that are multi-dimensional, with

mathematical experiences that are visual, physical, numerical, and more. These

approaches align with the principles of Universal Design for Learning (UDL), a
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framework designed to make learning more accessible, that helps all students. Visual

and physical representations of mathematics are not only for young children, nor are

they merely a prelude to abstraction or higher-level mathematics (Boaler et al, 2016).

Some of the most important high-level mathematical work and thinking—such as the

work of Fields medal winner Maryam Mirzakhani—is visual.

The different areas of neuroscientific research with evidence showing the potential of

brains to grow and change, the importance of times of struggle, and the value in

engaging with mathematics in multi-dimensional ways, should be shared with students.

When messages such as these were shown in a free online class offered through a

randomized controlled trial, students significantly increased their mathematics

engagement in class and improved later achievement (Boaler et al, 2018). This

information is shared through freely available lessons and videos on

https://youcubed.org.

Mathematics: Tools for Making Sense
Without mathematics, there’s nothing you can do. Everything around you is

mathematics. Everything around you is numbers.

—Shakuntala Devi, Author & “Human Calculator”

Mathematics grows out of curiosity about the world. Humans are born with an intuitive

sense of numerical magnitude (Feigenson, Dehaene, & Spelke 2004), and this intuitive

sense develops in early life into knowledge of number words, numerals, and the

quantities they represent.

Give babies a set of blocks, and they will build and order them, fascinated by the ways

the edges line up. Children will look up at the sky and be delighted by the V formations

in which birds fly. Count a set of objects with a young child, move the objects and count

them again, and they will be enchanted by the fact they still have the same number.

Human minds want to see and understand patterns (Devlin, 2006). But the joy and

fascination young children experience with mathematics is quickly replaced by dread
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and dislike when mathematics is introduced as a dry set of methods they think they just

have to accept and remember.

Young students’ work in mathematics is firmly rooted in their experiences in the world

(Piaget and Cook, 1952). Numbers name quantities of objects or measurements such

as time and distance, and operations such as addition and subtraction are represented

by manipulations of such objects or measurements. Soon, the whole numbers

themselves become a context that is concrete enough for students to grow curious

about and to reason within—with real-world and visual representations always available

to support reasoning.

Students who use mathematics powerfully can maintain this connection between

mathematical ideas and meaningful contexts. Historically, too many students lose the

connection at some point between primary grades and graduation from high school. The

resulting experience creates students who see mathematics as an exercise in

memorized procedures that match different problem types.

The broad themes of this framework encompass four points:

1. The work of students as mathematicians requires them to engage with content

and the SMPs through both oral and written language;

2. Teachers need to attend to students’ development of mathematical content,

SMPs, and language;

3. Mathematics content is best approached through a focus on big ideas,

investigation, and connections across content; and

4. Broadening mathematical competence through teaching and assessment

mathematics creates more inclusivity grounded in students’ lived experiences.

This framework adopts the implicit understanding that all students are capable of

accessing and mastering school mathematics in the ways envisioned in California

Common Core Standards for Mathematics (CA CCSSM). “Mastering” means becoming

inclined and able to consider novel situations (arising either within or outside

mathematics) through a variety of appropriate mathematical tools, using those tools to

21



understand the situation and, when desired, to exert their own power to affect the

situation. Thus, mathematical power is not reserved for a few, but available to all.

Translating this potential into reality requires a school mathematics system built to

achieve this purpose. Current structures often reinforce existing factors that allow

access for some while telling others they don’t belong; structures must instead

challenge those factors by providing relevant, authentic mathematical experiences that

make it clear to all students that mathematics is a powerful tool for making sense of and

affecting their worlds. This will be an important contribution to equitable outcomes.

Audience
The Math Framework is intended to serve many different audiences, each of whom

contribute to the shared mission of helping all students become powerful users of

mathematics as envisioned in the CA CCSSM. First and foremost, the Math Framework

is written for teachers and those educators who have the most direct relationship with

students around their developing proficiency in mathematics. As in every academic

subject, developing powerful thinking requires contributions from many; and so this

framework is also directed to:

● parents and caretakers of K–12 students who represent crucial partners in

supporting their students’ mathematical success;

● curricular materials designers and authors whose products help teachers to

implement the Standards through engaging, authentic classrooms;

● educators leading pre-service and teacher preparation programs whose students

face a daunting but exciting challenge of preparing to engage students in

meaningful, coherent mathematics;

● in-service professional learning providers who can help teachers navigate deep

mathematical and pedagogical questions as they strive to create coherent K–12

mathematical journeys for their students;

● instructional coaches and other key allies supporting teachers to improve

students’ experiences of mathematics;
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● site, district, and county administrators who want to support improvement in

mathematics experiences for their students;

● college and university instructors of California high school graduates who wish to

use the framework in concert with the Standards to understand the types of

knowledge, skills, and mindsets about mathematics that they can expect of

incoming students;

● educators focused on other disciplines so that they can see opportunities for

supporting their discipline-specific instructional goals while simultaneously

reinforcing relevant mathematics concepts and skills; and

● assessment writers who create curriculum, state, and national tests that signal

which content is important and the determine ways students should engage in

the content.

Updating Coherence, Focus, and Rigor
The CA CCSSM were adopted by the State Board of Education in 2010 and modified in

2013. Over a decade of experiences have made evident the kinds of challenges the

Standards posed for teachers, administrators, curriculum developers, professional

learning providers, and others. When the Standards and the subsequent framework

were each adopted, they both reflected an approach based on identifying major and

minor standards—a recognition that it can be difficult for teachers to address all

standards while maintaining a rich and deep learning experience for all students. This

approach essentially eliminated key areas of content (such as data literacy). This

framework reflects a revised approach, one that advocates for publishers and teachers

avoiding the process of organizing around the detailed content standards, and instead

establishing mathematics that reflect bigger ideas—those that connect many different

standards in a more coherent whole. The Math Framework responds to challenges

posed by each of the underlying principles.

Terms
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Big Idea: Big ideas in math are central to the learning of mathematics, link numerous

math understandings into a coherent whole, and provide focal points for students’

investigations.

Drivers of Investigation (DIs): unifying reasons that both elicit curiosity and provide

the motivation for deeply engaging with authentic mathematics (see end of this chapter)

Content Connections (CCs): content themes that provide mathematical coherence

through the grades (see end of this chapter)

Authentic: An authentic problem, activity, or context is one in which students

investigate or struggle with situations or questions about which they actually wonder.

Lesson design should be built to elicit that wondering. In contrast, an activity is

inauthentic if students recognize it as a straightforward practice of recently-learned

techniques or procedures, including the repackaging of standard exercises in forced

“real-world” contexts. Mathematical patterns and puzzles can be more authentic than

such real-world settings.

Necessitate: An activity or task necessitates a mathematical idea or strategy if the

attempt to understand the situation or task creates for students a need to understand or

use the mathematical idea or strategy.

Coherence
I like crossing the imaginary boundaries people set up between different fields—it's very

refreshing. There are lots of tools, and you don't know which one would work. It's about

being optimistic and trying to connect things.

—Maryam Mirzakhani, Mathematician, 2014 Fields Medalist

Despite their differences and unique complexities, the Standards for Mathematical

Practice (SMPs) and the Standards are intended to be equally important in planning,

curriculum, and instruction (CA CCSSM [2013], p. 3). The content standards, however,

are far more detailed at each grade level, and are more familiar to most educators; as a

result, the content standards continue to provide the organizing structure for most
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curriculum and instruction. Because the content standards are more granular,

curriculum developers and teachers find it easy when designing lessons to begin with

one or two content standards and choose tasks and activities which develop that

standard. Too often, this reinforces the concept as an isolated idea.

Because the Standards were then new to California educators (and to curriculum

writers), the 2013 California Mathematics Framework was comprehensive in its

treatment of the content standards; it included descriptions and examples throughout

the framework for most. In the intervening years, many more examples, exemplars, and

models of sample tasks representing illustrations of the mastery intended by each

standard have emerged. Thus, the need is different in 2021: California teachers and

students need mathematics experiences that provide access to the coherent body of

understanding and strategies of the discipline.

Instructional materials should primarily involve tasks that invite students to make sense

of these big ideas, elicit wondering in authentic contexts, and necessitate mathematical

investigation. Big ideas in mathematics are central to the learning of mathematics, link

numerous mathematical understandings into a coherent whole, and provide focal points

for students’ investigations. The value of focusing on big ideas for teachers, and their

students, cannot be overstated. Voices in the field emphasize this: “When teachers work

on identifying and discussing big ideas, they become attuned to the mathematics that is

most important and that they may see in tasks, they also develop a greater appreciation

of the connections that run between tasks and ideas” (Boaler, J., Munson, J., Williams,

C., 2018). In each grade band section, the description focuses on several big ideas that

have great impact on students’ conceptual understanding of numbers, and which are

connected to multiple elements of the content standards.

Mathematical notation no more is mathematics than musical notation is music. A page

of sheet music represents a piece of music, but the notation and the music are not the

same; the music itself happens when the notes on the page are sung or performed on a

musical instrument. It is in its performance that the music comes alive; it exists not on
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the page but in our minds. The same is true for mathematics.

—Keith Devlin (2001)

An authentic activity or problem is one in which students investigate or struggle with

situations or questions about which they actually wonder. Lesson design should be built

to elicit that wondering.

This framework sets out these organizing ideas to provide coherence and to help

teachers avoid losing the forest for the trees. That is, discrete content standard mastery

does not necessarily assemble in students’ minds into a coherent big-picture view of

mathematics.

This framework’s response to the challenge posed by the principle of coherence are:

focusing on big ideas, both as Drivers of Investigation (the reasons why we do

mathematics, see section below), and Content Connections (both within and across

domains, see section below); progressions of learning across grades (thus, grade-band

chapters rather than individual grade chapters); and relevance to students’ lives.

Principles guiding grade-band chapters include

● design from a smaller set of big ideas, spanning TK–12 in the forms of Drivers of

Investigation (DIs) and Content Connections (CCs), within each grade band (see

below);

● a preponderance of student time spent on authentic problems through the lenses

of DIs and CCs (see below) that engage multiple content and practice standards

situated within one or more big ideas;

● a focus on connections: between students’ lives and mathematical ideas and

strategies; and between different mathematical ideas; and

● constant attention to opportunities for students to bring other aspects of their

lives into the math classroom: How does this mathematical way of looking at this

phenomenon compare with other ways to look at it? What problems do you see

in our community that we might analyze? Teachers who relate aspects of
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mathematics to students’ cultures often achieve more equitable outcomes

(Hammond, 2014).

Focus
I didn’t want to just know the names of things. I remember really wanting to know how it

all worked.

—Elizabeth Blackburn, Winner of the 2009 Nobel Prize for Physiology or Medicine.

The principle of focus is closely tied to the goal of depth of understanding. The principle

derives from a need to confront the mile-wide but inch-deep mathematics curriculum

experienced by many.

Instructional design built on moving from one content standard to the next underscores

the challenging reality that the Standards simply contain too many concepts and

strategies to address comprehensively in this manner. Teachers often opt to choose

between covering standards at an adequate depth (while skipping some topics), or

including all topics from the Standards for their grade level and compromising

opportunities to reach rich, deep understandings.

One common approach to the coverage-versus-depth challenge is to designate some

content standards more important than others. An unintentional result of this, in many

schools, is that the standards deemed “less important” simply are not addressed.

The Standards, however, are not a design for instruction, and should not be used as

such. The Standards lay out expected mastery of content at the grade levels, and

expected mathematical practices at the conclusion of high school. They say little about

how to achieve that mastery or build those practices.

This framework’s answer to the coverage-vs-depth challenge posed by the principle of

focus is to lay out principles for (and examples of) instructional design that make the

Standards achievable. These principles include as follows:

● Focus on investigations and connections, not individual standards: class

activities should be designed around big ideas, and typically should necessitate
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several clusters of content standards and multiple practice standards, as part of

an investigation. Connections between those content standards then becomes

an integral part of the class activity, and not an additional topic to cover. The twin

focus on investigations and connections is reflected in titles and structure of the

grade-banded chapters, Chapters 6, 7, and 8, as well as in the DIs and CCs (see

below).

● Tasks must be worthy of student engagement.

o Problems (tasks which students do not already have the tools to solve)

precede teaching of the focal mathematics which are necessitated by the

problem. That is, the major point of a problem is to raise questions that

can be answered, and promote students using their intuition, before

learning new mathematical ideas (Deslauriers, McCarty, Miller, Callaghan,

& Kestin, 2019).

o Exercises (tasks which students already have the tools to solve) should

either be embedded in a larger context which is motivating (such as the

Drivers of Investigations, or exploration of patterns, or games), or should

address strategies whose improvement will help students accomplish

some motivating goal.

o Students should learn to see their goal as investigating mathematical

ideas, asking important questions, making conjectures and developing

curiosity about mathematics and mathematical connections.

Rigor
True rigor is productive, being distinguished in this from another rigor which is purely

formal and tiresome, casting a shadow over the problems it touches.

—Émile Picard (1905)

In this framework, rigor refers to an integrated way in which conceptual understanding,

strategies for problem-solving and computation, and applications are learned, so that

each supports the other. This definition is more specific and somewhat more demanding
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than the CA CCSSM’s requirement that “rigor requires that conceptual understanding,

procedural skill and fluency, and application be approached with equal intensity” (CA

CCSSM, 2013, p. 2).

This definition expresses the basis of mathematical rigor: reasoning which enables

understanding “all the way down to the bottom” (Ellenberg, 2014, p. 48), often

expressed in terms of validity and soundness of arguments. According to the definition

used here, conceptual understanding cannot be considered rigorous if it cannot be used

to analyze a novel situation encountered in the world; computational speed and

accuracy cannot be called rigorous unless it is accompanied by conceptual

understanding of the strategy being used, including why it is appropriate in a given

situation; and a correct answer to an application problem is not rigorous if the solver

cannot explain to the client both the ideas of the model used and the methods of

calculation.

In particular, rigor is not about abstraction. In fact, a push for premature abstraction

leads, for many students, to an absence of rigor in the sense used in this framework. It

is true that more advanced mathematics often occurs in more abstract contexts. This

leads many to value more abstract subject matter as a marker of rigor. “Abstraction” in

this case usually means “less connected to reality.”

But mathematical abstraction is in fact deeply connected to reality: When second

graders use a representation with blocks to argue that the sum of two odd numbers is

even, in a way that other students can see would work for any two odd numbers (a

representation-based proof; see Schifter, 2010), they have abstracted the idea of odd

number, and they know that what they say about an odd number applies to one, three,

five, etc. (Such an argument reflects SMP.7: Look for and make use of structure.)

Abstraction must grow out of experiences in which students experience the same

mathematical ideas and representations showing up and being useful in different

contexts. When students figure out the size of a population, after 50 months, with a

growth of three percent a month; their bank balance after 50 years if they can earn
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3 percent interest per year; and the number of people after 50 days who have

contracted a disease that is spreading at 3 percent per day, they will abstract the notion

of a quantity growing by a certain percentage per time period, and recognize that they

can use the same reasoning in each case to understand the changing quantity.

Thus, the challenge posed by the principle of rigor is to provide all students with

experiences that interweave concepts, problem-solving (including appropriate

computation), and application, such that each supports the other. To meet this

challenge, the Math Framework emphasizes these principles for designing instruction:

● Abstract formulations should follow experiences with multiple contexts that call

forth similar mathematical models.

● Contexts for problem-solving should be chosen to provide representations for

important concepts, so that students may later use those contexts to reason

about the mathematical concepts raised. The Drivers of Investigation (see below)

provide broad reasons to think rigorously (“all the way to the bottom”) in ways

that linkages between and through topics (Content Connections, see below) are

recognized, valued and internalized.

● Computation should serve a genuine need for students to know, typically in a

problem-solving or application context.

● Applications should be authentic to students and should be enacted in a way that

requires students to explain or present solution paths and alternate ideas.

Assessing for Coherence, Focus and Rigor
In order to gauge what students know and can do in mathematics, we need to broaden

assessment beyond narrow tests of procedural knowledge to better capture the

connections between content and SMPs. For example, assessing a good mathematical

explanation includes how students mathematize a problem, connect the mathematics to

the context, and explain their thinking in a clear, logical manner that leads to a

conclusion or solution (Callahan, 2020). Helpful math guidelines from the English

Learner Success Forum (ELSF) center on focus area five, assessment of mathematical
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content, practices, and language. Specifically, these guidelines note the need to capture

and measure students’ progress over time (ELSF guideline 14), and attend to student

language produced (ELSF guideline 15).

Designing for Coherence, Focus and Rigor: Drivers of
Investigation and Content Connections
With motivating students to learn coherent, focused, and rigorous mathematics as the

goal, this framework identifies three Drivers of Investigation (DIs), which provide the

“why” of learning mathematics, to pair with four categories of Content Connections

(CCs), which provide the “how and what” mathematics (CA CCSSM) is to be learned in

an activity. Together with the Standards for Mathematical Practice, the Drivers of

Investigation are meant to propel the learning of the ideas and actions framed in the

Content Connections in ways that are coherent, focused, and rigorous.

The following diagram is meant to illustrate the ways that the Drivers of Investigation

relate to the Content Connections and Standards for Mathematical Practice. Note that

any Driver of Investigation can go with any of the Content Connections and any of the

Standards for Mathematical Practice.

Figure 1: Content Connections, Mathematical Practices and Drivers of Investigation
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Image long description: Three Drivers of Investigation (DIs) provide the “why” of

learning mathematics: Making Sense of the World (Understand and Explain); Predicting

What Could Happen (Predict); Impacting the Future (Affect). The DIs overlay and pair

with four categories of Content Connections (CCs), which provide the “how and what”

mathematics (CA-CCSSM) is to be learned in an activity: Communicating stories with

data; Exploring changing quantities; Taking wholes apart, putting parts together;

Discovering shape and space. The DIs work with the Standards for Mathematical

Practice to propel the learning of the ideas and actions framed in the CCs in ways that

are coherent, focused, and rigorous. The Standards for Mathematical Practice are:

Make sense of problems and persevere in solving them; Reason abstractly and

quantitatively; Construct viable arguments and critique the reasoning of others; Model
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with mathematics; Use appropriate tools strategically; Attend to precision; Look for and

make use of structure; Look for and express regularity in repeated reasoning.

Drivers of Investigation
The Content Connections should be developed through investigation of questions in

authentic contexts; these investigations will naturally fall into one or more of the

following Drivers of Investigation. The DIs are meant to serve a purpose similar to that

of the Crosscutting Concepts in the California Next Generation Science Standards, as

unifying reasons that both elicit curiosity and provide the motivation for deeply engaging

with authentic mathematics. The aim of the Drivers of Investigation is to ensure that

there is always a reason to care about mathematical work, and that investigations allow

students to make sense, predict, and/or affect the world. The DIs are:

● DI1: Making Sense of the World (Understand and Explain)

● DI2: Predicting What Could Happen (Predict)

● DI3: Impacting the Future (Affect)

Used in conjunction with the Content Connections, and the Standards for Mathematical

Practice, the Drivers of Investigation can guide instructional design. For example,

students can make sense of the world (DI1) by exploring changing quantities (CC2)

through classroom discussions wherein students have opportunities to construct viable

arguments and critique the reasoning of others (SMP.3).

Teachers can use the DIs to frame questions or activities at the outset for the class

period, the week, or longer; or refer to these in the middle of an investigation (perhaps

in response to the “Why are we doing this again?”-type questions students often ask), or

circle back to these at the conclusion of an activity to help students see “why it all

matters.” Their purpose is to leverage students’ innate wonder about the world, the

future of the world, and their role in that future, in order to motivate productive

inclinations (the SMPs) that foster deeper understandings of fundamental ideas (the

CCs and the Standards), and to develop the perspective that mathematics is a lively,

flexible endeavor by which we can appreciate and understand so much of the inner
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workings of our world.

Content Connections
The four Content Connections described in the framework organize content and provide

mathematical coherence through the grades:

● CC1: Communicating Stories with Data

● CC2: Exploring Changing Quantities

● CC3: Taking Wholes Apart, Putting Parts Together

● CC4: Discovering Shape and Space

Content Connection 1: Communicating Stories with Data
With data all around us, even the youngest learners make sense of the world through

data—including data about measurable attributes. In grades TK–5, students describe

and compare measurable attributes, classify objects and count the number of objects in

each category. In grades 6–8, prominence is given to statistical understanding,

reasoning with and about data, reflecting the growing importance of data as the source

of most mathematical situations that students will encounter in their lives. In grades

9–12, reasoning about and with data is emphasized, reflecting the growing importance

of data as the source of most mathematical situations that students will encounter in

their lives. Investigations in a data-driven context—data either generated/collected by

students, or accessed from publicly-available sources—help maintain and build the

integration of mathematics with students’ lives (and with other disciplines such as

science and social studies). Most investigations in this category also involve aspects of

CC2: Exploring Changing Quantities.

Content Connection 2: Exploring Changing Quantities
Young learners’ explorations of changing quantities support their development of

meaning for operations, and types of numbers. The understanding of fractions

established in TK–5 provides them with the foundation they need to explore ratios,

rates, and percents in grades 6–8. In grades 9–12, students make sense of, keep track
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of, and connect a wide range of quantities, and find ways to represent the relationships

between these quantities in order to make sense of and model complex situations.

Content Connection 3: Taking Wholes Apart, Putting Parts Together
Students engage in many experiences with taking apart quantities and putting parts

together strategically, including utilizing place value in performing operations (such as

making 10), decomposing shapes into simpler shapes and vice versa, and relying upon

unit fractions as the building blocks of whole and mixed numbers. This Content

Connection also serves as a vehicle for student exploration of larger-scale problems

and projects, many of which will intersect with other CCs as well. Investigations in this

CC will require students to decompose challenges into manageable pieces, and

assemble understanding of smaller parts into understanding of a larger whole.

Content Connection 4: Discovering Shape and Space
In the early grades, students learn to describe their world using geometric ideas (e.g.,

shape, orientation, spatial relations). They use basic shapes and spatial reasoning to

model objects in their environment and to construct more complex shapes, thus setting

the stage for measurement and initial understanding of properties such as congruence

and symmetry. Shape and space work in grades 6–8 is largely about connecting

foundational ideas of area, perimeter, angles, and volume notions to each other, to

students’ lives, and to other areas of mathematics, such as nets and surface area or

two-dimensional shapes to coordinate geometry. In grades 9–12, the CA CCSSM

supports visual thinking by defining congruence and similarity in terms of dilations and

rigid motions of the plane, and through its emphasis on physical models,

transparencies, and geometry software.

New to this Framework
To address the needs of California educators in 2021, the Math Framework includes

several new emphases and types of chapters. Unlike 2013, when the framework

featured two separate chapters—one on instruction and one on access—the 2021
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framework offers a single chapter, Chapter 2: Teaching for Equity and Engagement,

which promotes instruction that fosters equitable learning experiences for all, and

challenges the deeply-entrenched policies and practices that lead to inequitable

outcomes. While some people argue for a false dichotomy between equity and high

achievement, this framework rejects that notion in favor of emphasizing ways good

teaching leads to equitable and higher outcomes. Instruction and equity together create

instructional designs that can bring about equitable outcomes. The State-level

commitment to equity extends throughout the framework, and every chapter highlights

considerations and approaches designed to help mathematics educators create and

maintain equitable opportunities for all.

Two chapters are devoted to exploring the development, across the TK–12 grade

timeframe, of particular content areas. One such area is number sense across TK–12

(Chapter 3: Number Sense), a crucial foundation for all later mathematics and early

predictor of mathematical perseverance. The other is data science (Chapter 5: Data

Science), which has become tremendously important in the field since the last

framework. The other new chapter, Chapter 4: Exploring, Discovering, and Reasoning

With and About Mathematics, presents the development of a related cluster of SMPs

across the entire TK–12 timeframe. While it is beyond the scope of the Math Framework

to develop such a “progression” for all SMPs, this chapter can guide the careful work

that is required to develop SMPs across the grades. The idea of learning progressions

across multiple grade levels is emphasized further in the grade-banded chapters,

Chapter 6: Grades TK–5, Chapter 7: Grades 6–8, and Chapter 8: Grades 9–12. The big

ideas for each grade band, in the form of overarching Drivers of Investigation and

Content Connections, provide a structure for promoting relevant and authentic activities

for students, sample tasks, snapshots, and vignettes to illustrate the building of ideas

across grades. Chapter 9: Supporting Equitable and Engaging Mathematics Instruction,

presents guidance designed to build an effective system of support for teachers as they

facilitate learning for their students; it includes advice for administrators and leaders and

sets out models for effective teacher learning. Chapter 10: Technology and Distance
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Learning in the Teaching of Mathematics, describes the purpose of technology in the

learning of mathematics, introduces overarching principles meant to guide such

technology use, and general guidance for distance learning. Chapter 11: Assessment in

the 21st Century, addresses the need to broaden assessment practices beyond answer

finding to record student thinking, and to create assessment systems that emphasize

growth of leaning over performance. The chapter reviews “Assessment for Learning”

and concludes with a brief overview of the Common Core-aligned standardized

assessment used in California: the California Assessment of Student Performance and

Progress. Chapter 12: Instructional Materials, is intended to support publishers and

developers of instructional materials to serve California’s diverse student population.

This chapter provides guidance for local districts on the adoption of instructional

materials for students in grades 9–12, the social content review process, supplemental

instructional materials, and accessible instructional materials.

Explicit Focus on Environmental Principles and Concepts. While the Drivers of

Investigations and Content Connections are fundamental to the design and

implementation of this framework and the standards, teachers must be mindful of other

considerations that are a high priority for California’s education system including the

Environmental Principles and Concepts (EP&Cs) which allow students to examine

issues of environmental and social justice.
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